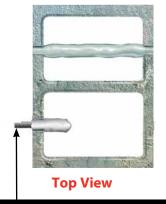


Notes	
	RED HEAD
	MAXIMUM STRENGTH, SAME-SHIFT CURE, HIGH TEMPERATURE
	RÉSISTANCE MAXIMALE, DURCISSEMENT DANS IL MEME QUART DE TRAVAIL, TEMPÉRATURE ÉLEVÉ
	ONCRETE & MASONRY ANCHORING ADHESIVE ONE OF THE STATE OF
	Service Servic
	(NSE) ICC
	FOR THE MOST DEMANDING JOBS POUR LES TÂCHES LES PLUS EXIGEANTES

TABLE OF CONTENTS


Anchoring Working Principles	RH 4
Red Head Adhesive Anchoring Systems	RH 7
Adhesive Anchoring Selection Guide	RH 8
A7+ Adhesive	RH 10
C6+ Adhesive	RH 21
Umbrella Inserts and Stubby Screens	RH 29
Screen Tubes	RH 32
Accessories	RH 34
Mechanical Anchoring	RH 35
Mechanical Anchoring Selection Guide	RH 36
Trubolt Wedge Anchors	RH 40
Large Diameter Tapcon (LDT) Anchors	RH 42
Tapcon+ Drop-In Anchors	RH 47
Multi-Set II Drop-in Anchors	RH 52
Dynabolt Sleeve Anchors	RH 56
Hammer-Set Anchors	RH 59
Truspec Anchor Design Software	RH 60

AnchoringWorking Principles

RED HEAD CONCRETE ANCHORING SYSTEMS

The Inside
Story About
Mechanical
and Adhesive
Anchors

Types, Base Materials, Installation Procedures and More

For attachments to single face of block, see page RH 29 for information on "umbrella anchors" and "stubby screens"

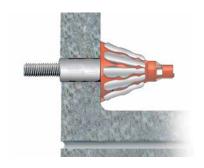
HOLLOW CONCRETE BLOCK

Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.

TYPES OF ANCHORS

Expansion Type—

Tension loads are transferred to the base material through a portion of the anchor that is expanded inside the drill hole.


Examples: Red Head Trubolts, Dynabolts,
Multi-Set II Anchors and Hammer-Sets

Adhesive Type—

Resistance to tension loads is provided by the presence of an adhesive between the threaded rod (or rebar) and the inside walls of the drill hole.

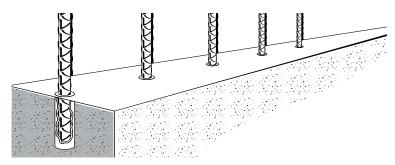
Examples: A7+ and C6+ Adhesives

Keying Type—

Holding strength comes from a portion of an anchor that is expanded into a hollow space in a base material that contains voids such as concrete block or brick.

Examples: Adhesives used in screen tubes or umbrella insert

Mechanical Interlocking Type—


Tension loads are resisted by threads on the fastener engaging with threads cut into the base material.

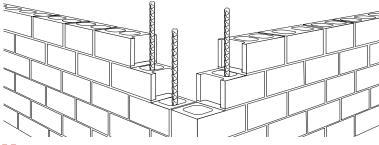
Examples: LDT, Tapcon and E-Z Ancors

Visit Red Head's web site <u>www.itwredhead.com</u> for the most current product and technical information.

Anchoring Working Principles

BASE MATERIALS

Concrete

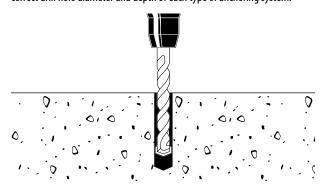

Normal Weight Concrete is made from Portland cement, coarse and fine aggregates, water and various admixtures. The proportioning of these components controls the strength of the concrete. In North America, concrete strength is specified by the compressive strength* of concrete test cylinders. These test cylinders measure six inches in diameter by 12 inches in length and are tested on the 28th day after they are produced.

Lightweight Concrete consists of the same components (cement, coarse and fine aggregates, water and admixtures) as normal weight concrete, except it is made with lightweight aggregate. One of the most common uses of lightweight concrete has been as a structural fill of steel decking in the construction of strong, yet light floor systems.

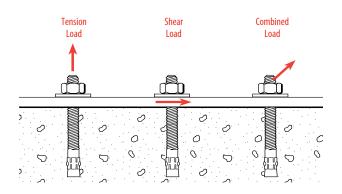
Typical fasteners for both normal weight and lightweight concrete include Trubolt Wedge Anchors, LDT Self-Threading Anchors, Dynabolt Sleeve Anchors, Multi-Set II Drop-In Anchors, Stud Anchors and Adhesive Anchoring Systems.

* Compressive strengths shown in this catalog were the actual strengths at the time of testing.

The load values listed were determined by testing in un-reinforced concrete.


Masonry

Grout-Filled Concrete Block consists of three components: concrete, mortar and grout. The mortar is designed to join the units into an integral structure with predictable performance properties. Typical fasteners for grout-filled block include Dynabolt Sleeve Anchors, and A7+ Adhesive Anchoring Systems.


Hollow Concrete Block, Brick and Clay Tile are grouped together because they require special anchoring products that can be installed into a substrate that contains voids and still provide reliable holding values. Typical fasteners used in hollow block, brick and clay tile include Dynabolt Sleeve Anchors, Tapcon Self-Tapping Concrete Anchors, Adhesives with Screen Tubes and Adhesives used with the Umbrella Insert.

INSTALLATION PROCEDURES

Anchor drill holes are typically produced using carbide tipped drill bits and rotary hammer drills. Look at the product sections of this catalog for the correct drill hole diameter and depth of each type of anchoring system.

Careful cleaning of the anchor drill hole is important in order to obtain the best possible functioning of the anchor system. For each product in this catalog, detailed installation instructions are provided. Suggested clamping torques and curing times (for adhesive anchors) are also provided.

Loading

Holding values for the following types of loading are provided in this catalog:

■ Tension loads—

when load is applied along the axis of the anchor

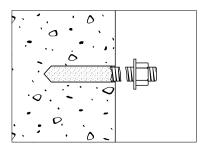
Shear loads—

when the loads are applied perpendicular to the axis of the anchor

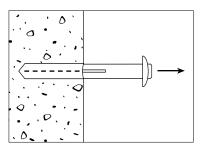
■ Combined loads—

when both tension and shear loads are applied to an anchor, a combined loading equation is provided to determine the maximum loads that can be applied to the anchor at the same time

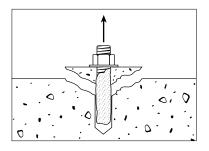
Anchoring Working Principles


MODES OF FAILURE

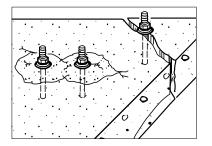
When anchors are loaded to their maximum capacity, several different types (modes) of failure are possible depending on the type of anchor, strength of the base material, embedment depth, location of the anchor, etc. Common modes of failure include:


Concrete Spall Cone—

Usually occurs at shallow embedments where the resistance of the base material is less than the resistance of the anchor and the base material fails.


Steel Breakage—

The capacity of the anchorage exceeds the tensile or shear strength of the steel anchor or rod material.


Anchor Pullout—

Base material adjacent to the extension portion of an anchor crushes, resulting in the anchor pulling out of the hole until the capacity of the spall cone is reached, at which point the concrete will spall. This type of failure happens more commonly when anchors are set with deep embedment depths.

Bond Failure—

Shear failure of the adhesive at rod-adhesive interface or adhesive-base material interface. Occurs more commonly in deep embedments using high strength steel rods.

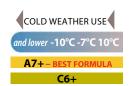
Edge Distance and Spacing Reduction—

Reduces the holding values, when anchors are placed too close to the edge. This also occurs when two or more anchors are spaced closely together. See suggested edge distance, anchor spacing distances and reduction values in the product sections.

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-899-7890.

Engineered to provide consistently strong holding power for superior anchoring in solid concrete and hollow masonry

The RED HEAD Adhesive Anchoring System includes a complete family of quality products and accessories designed to work in a variety of fastening applications. Get maximum anchoring performance with:


Epoxy Systems—Epoxies are very strong (1-1/2 times stronger than mechanical anchors) and insensitive to moisture. Mix ratio and thorough blending of the hardener and resin are important with epoxies. Maximum performance of RED HEAD epoxies is achieved by accurate proportions and mixing provided by our highly engineered cartridges, mixing nozzles, and dispensing tools.

Hybrid Systems—Combine an excellent mixing ability and chain reaction curing mechanism with a tough, hybrid adhesive. Our hybrid chemistry is ideal for anchoring because it dispenses fast, is not mix ratio sensitive, provides ample working time, and cures extremely fast in small and large diameter holes. Rods are easier and faster to insert in acrylic adhesives than epoxy adhesives at all temperatures.

Adhesive Anchoring Selection Guide

Solid Concrete Applications

40 MPa UNCRACKED FACTORED RESISTANCE PRODUCT SYSTEMS KEY FEATURES PROPERTIES IN TENSION (lbf) **A7**+ All weather formula for for both hollow and solid base material Fast Dispensing, Fast Curing Great performance in damp holes and Adhesive for All Conditions underwater applications

NSF Certified to ANSI/NSF 61

cartridges

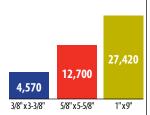
(see page RH 10)

Most versatile quick cure solution

10 fluid oz. (275 ml) and 28 fluid oz. (825 ml)

non-structural anchoring Fast curing time, 45 minutes at 21°C

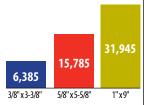
Applicable for both structural and


- No drip, no sag, easy clean up, low ordor
- Rods are easier to insert into the hole with A7+ compared with other adhesives
- Hole only needs to be 1/16" larger than the stud (competition requires 1/8" larger)
- Approved for cracked, uncracked, seismic, mansory
- NFS 61 approved

BASE MATERIAL (F°/C°)	WORKING TIME	FULL CURE TIME
110°/ 43°	1.5 minutes	45 minutes
90°/ 32°	2.5 minutes	45 minutes
70°/ 21°	5 minutes	45 minutes
50°/ 10°	16 minutes	90 minutes
32°/ 0°	35 minutes	4 hours
14°/ -10°	35 minutes	24 hours

Adhesive must be a minimum temperature of 32°F (0°C) for proper installation

C6+ For the Most **Demanding Jobs** Red Head's highest strength adhesive

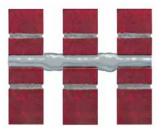


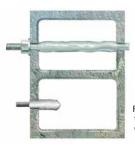
- At least 25% stronger than the old C6+ formulation for threaded rod in cracked concrete and with seismic conditions Fastest Cure time in its class, curing
- in just 2.75 hours at 90°F and in only 2 hours at 110°F!
- ICC-ES approvals for concrete (uncracked and cracked concrete, and seismic conditions) and masonry
- ICC-ES Approved for use in core-drill holes, even in cracked concrete
- Can be used in oversized holes
- 24 month shelf life
- NSF/ANSI 61

BASE MATERIAL (F°/C°)	GEL/WORKING TIME ²	FULL CURE TIME
110°/ 43°	10 minutes	2 hours
90°/ 32°	14 minutes	2.75 hours
70°/ 21°	16 minutes	6.5 hours
50°/ 10°	30 minutes	24 hours
40°/ 4°	46 minutes	48 hours

- For concrete temperatures between 4°C 10°C adhesive must be maintained at a minimum of 13°C during installation.

 ² Gel time is max time from the end of mixing to when
- the insertion of the threaded rod or rebar into the adhesive shall be completed




TW Construction Products

Hollow Base Material Applications

Use the following accessories with the A7+ adhesive anchoring systems for all of your hollow base material applications.

Fastening to hollow concrete block

3/8" to 3/4" diameter sizes30%-50% lower cost than stainless screens	<u>A7+</u>
Special design makes screens easier to insert through block or brick Does not get bent or crushed Corrosion resistant (see page RH 32)	2,647 2,360 3/8"x8" 3/4"x8"
 3/8", 1/2", 5/8" diameter sizes Fasten to front face of block Anchor remains perpendicular in wall 	2,543 2,458 1/2 " 5/8"
For 3/8" rods 3/8" internal inserts Fasten to front face of blocks Creates large bearing surface inside block to achieve high loads	A7+ 3,558 3,558 1/2"
	through block or brick Does not get bent or crushed Corrosion resistant 3/8", 1/2", 5/8" diameter sizes Fasten to front face of block Anchor remains perpendicular in wall (see page RH 29) For 3/8" rods 3/8" internal inserts Fasten to front face of blocks Creates large bearing surface inside block to achieve high loads

¹Testing performed in hollow concrete block.

² Diameter x Embedment.

A7+

Most versatile quick cure adhesive solution for light, medium, and heavy duty concrete anchoring that meets code approval

DESCRIPTION/SUGGESTED SPECIFICATIONS*

*Suggested Specifications see pages RH 1

Fast Dispensing, Fast Curing Hybrid Adhesive

This hybrid adhesive is dispensed from a dual cartridge through a static mixing nozzle, directly into the anchor hole. A7+ is a quick cure adhesive specifically designed for both structural and non-structural anchoring applications. It comes in both 10 oz and 28 oz.

ADVANTAGES

- All weather formula for for both hollow and solid base material
- Great performance in damp holes and underwater applications
- Applicable for both structural and non-structural anchoring
- Fast curing time, 45 minutes at 21°C
- No drip, no sag, easy clean up, low ordor

- Rods are easier to insert into the hole with A7+ compared with other adhesives
- Hole only needs to be 1/16" larger than the stud (competition requires 1/8" larger)
- Approved for cracked, uncracked, seismic, mansory
- NFS 61 approved

Spacing and Edge Distance

NOMINAL ANCHOR DIAMETER (IN.)	MINIMUM SPACING (IN.)	MINIMUM EDGE DISTANCE (IN.)
3/8	1	1
1/2	1-1/2	1-1/2
5/8	2-1/2	2-1/2
3/4	3	3
7/8	3-1/2	3-1/2
1	4	4
1-1/4	5	5

Curing Times

BASE MATERIAL (F°/C°)	WORKING TIME	FULL CURE TIME
110°/ 43°	1.5 minutes	45 minutes
90°/ 32°	2.5 minutes	45 minutes
70°/ 21°	5 minutes	45 minutes
50°/ 10°	16 minutes	90 minutes
32°/ 0°	35 minutes	4 hours
14°/ -10°	35 minutes	24 hours

^{*}Adhesive must be a minimum temperature of 32°F (0°C) for proper installation

APPLICATIONS

Stadium Seating

NFL football stadium and many others.

The fast dispensing, fast curing properties of A7+ made it ideal for installing over 70,000 seats in this

APPROVALS/LISTINGS

ASTM C881 Type I, II, IV & V; Grade 3, Class A, B, & C with the exception of gel time (Class C only)

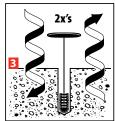
ICC ESR-3903 for concrete and ICC ESR-3951 for masonry

MTO Approval

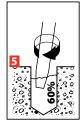
MTQ Approval

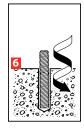
BC MoTI Approval

NSF 61 Compliant


Roadway Doweling

A7+ dispenses so quickly and rebar inserts so easily that contractors find installed costs are lower than many other products including grout for doweling.


INSTALLATION STEPS



- $oldsymbol{1}$. Use a rotary hammer drill or pneumatic air drill with a carbide drill bit complying with ANSI B212.15. Drill hole to the required embedment depth. For installation of 3/8'' - 1-1/4'' anchors, see www.itwredhead.com for a bit diameters and min/max embedment depths.
- 2. Starting at the bottom of the hole, move a clean air nozzle in and out of the hole, cleaning with compressed air. Repeat until free of debris.**
- 3. Select appropriately sized Red Head brush based on anchor diameter and depth of hole. See www.itwredhead.com for brush specifications, including minimum diameter. Check brush for wear before use. Insert the brush into the hole with a clockwise motion until the bottom of hole is reached. Pull brush out of hole and repeat at least one additional time. For faster cleaning, attach the brush to a drill/drive.
- 4. Repeat Step 2
- 5. Place the cartridge/nozzle assembly into the dispensing tool. Note: Do not modify or remove mixing elements in nozzle. Review the gel time/cure time chart, based on the temperature at time of installation, in order to determine tool, cartridge and nozzle requirements. Dispense mixed adhesive outside of hole until uniform color is achieved. Insert the nozzle to the bottom of the hole and dispense adhesive until hole is 2/3 full. If nozzle does not reach the bottom of the hole, use Red Head extension tubing positioned on the end of the nozzle. For holes that contain water, keep dispensing adhesive below water in order to displace the water upward.
- 6. Immediately insert the rod/rebar assembly to the required embedment depth using a slow rotating motion. The anchor rod/rebar must be marked with the required embedment depth. Ensure the adhesive fills all voids and uniformly covers rod/concrete. Do not disturb anchor or apply load/torque until adhesive is fully cured.

Water Treatment Facilities

The fast dispensing, fast curing properties of A7+ make it ideal for repetitive installation processes.

ANCHORAGE TO SOLID CONCRETE

Threaded Rod (Carbon or Stainless Steel) or Rebar supplied by contractor; rod does not need to be chisel pointed

A7+ adhesive completely fills area between rod and hole creating a stress free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

A7P-28 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY
A7P-28	28 Fluid Ounce Cartridge A7+ with nozzle	4
\$55	Mixing Nozzle for A7P-28 Cartridge Nozzle diameter fits holes for 3/8" diameter & larger anchors (overall length of nozzle 10")	24
S75	High Flow Mixing Nozzle for A7P-28 Cartridge Nozzle diameter fits holes for 5/8" diameter & larger anchors (overall length of nozzle 9-1/4")	24

	PART NUMBER	DESCRIPTION					
	◆ PERSON NAMED TO	Largest hand dispensable cartridge— still easy to dispense					
l	A102-V3	Hand Dispenser for A7P-28 Cartridge	1				
	A200	Pneumatic Dispenser for A7P-28	1				
	1200	Cordless Battery Dispenser for A7P-28 and C6P-30 Cartridge. Includes one battery and charger.	1				
	A300	Works with all Milwaukee® M18™ batteries	1				

Refer to page RH 34 for ordering information on wire brushes, brush extensions, and blow pump for deep holes.

ESTIMATING TABLE

A7+ Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Reinforcing Bar with A7+ Adhesive in Solid Concrete

REBAR	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
#3	7/16	560.3	280.2	186.8	140.1	112.1	93.4	80.0	70.0	62.3	56.0	50.9	46.7	43.1	40.0	37.4
10M	9/16	339.0	169.5	113.0	84.7	67.8	56.5	48.4	42.4	37.7	33.9	30.8	28.2	26.1	24.2	22.6
#4	5/8	274.6	137.3	91.5	68.6	54.9	45.8	39.2	34.3	30.5	27.5	25.0	22.9	21.1	19.6	18.3
#5 or 15M	3/4	190.7	95.3	63.6	47.7	38.1	31.8	27.2	23.8	21.2	19.1	17.3	15.9	14.7	13.6	12.7
#6 or 20M	7/8	140.1	70.0	46.7	35.0	28.0	23.3	20.0	17.5	15.6	14.0	12.7	11.7	10.8	10.0	9.3
#7	1	107.2	53.6	35.7	26.8	21.4	17.9	15.3	13.4	11.9	10.7	9.7	8.9	8.2	7.7	7.1
#8 or 25M	1 1/8	84.7	42.4	28.2	21.2	16.9	14.1	12.1	10.6	9.4	8.5	7.7	7.1	6.5	6.1	5.6
#9	1 1/4	68.6	34.3	22.9	17.2	13.7	11.4	9.8	8.6	7.6	6.9	6.2	5.7	5.3	4.9	4.6
#10 or 30M	1 3/8	56.7	28.4	18.9	14.2	11.3	9.5	8.1	7.1	6.3	5.7	5.2	4.7	4.4	4.1	3.8
#11	1 3/4	35.0	17.5	11.7	8.8	7.0	5.8	5.0	4.4	3.9	3.5	3.2	2.9	2.7	2.5	2.3

^{*} The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ESTIMATING TABLE

A74 Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Threaded Rod with A7+ Adhesive in Solid Concrete

THREADED	DRILL						E	MBEDMENT	DEPTH IN I	NCHES (mm)					
ROD	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	5/16	1098.2	549.1	366.1	274.6	219.6	183.0	156.9	137.3	122.0	109.8	99.8	91.5	84.5	78.4	73.2
3/8	7/16	560.3	280.2	186.8	140.1	112.1	93.4	80.0	70.0	62.3	56.0	50.9	46.7	43.1	40.0	37.4
1/2	9/16	339.0	169.5	113.0	84.7	67.8	56.5	48.4	42.4	37.7	33.9	30.8	28.2	26.1	24.2	22.6
5/8	11/16	226.9	113.5	75.6	56.7	45.4	37.8	32.4	28.4	25.2	22.7	20.6	18.9	17.5	16.2	15.1
	3/4	190.7	95.3	63.6	47.7	38.1	31.8	27.2	23.8	21.2	19.1	17.3	15.9	14.7	13.6	12.7
3/4	13/16	162.5	81.2	54.2	40.6	32.5	27.1	23.2	20.3	18.1	16.2	14.8	13.5	12.5	11.6	10.8
	7/8	140.1	70.0	46.7	35.0	28.0	23.3	20.0	17.5	15.6	14.0	12.7	11.7	10.8	10.0	9.3
7/8	15/16	122.0	61.0	40.7	30.5	24.4	20.3	17.4	15.3	13.6	12.2	11.1	10.2	9.4	8.7	8.1
	1	107.2	53.6	35.7	26.8	21.4	17.9	15.3	13.4	11.9	10.7	9.7	8.9	8.2	7.7	7.1
1	1-1/16	95.0	47.5	31.7	23.8	19.0	15.8	13.6	11.9	10.6	9.5	8.6	7.9	7.3	6.8	6.3
	1-1/8	84.7	42.4	28.2	21.2	16.9	14.1	12.1	10.6	9.4	8.5	7.7	7.1	6.5	6.1	5.6
1-1/4	1-1/3	62.3	31.1	20.8	15.6	12.5	10.4	8.9	7.8	6.9	6.2	5.7	5.2	4.8	4.4	4.2
	1-3/8	56.7	28.4	18.9	14.2	11.3	9.5	8.1	7.1	6.3	5.7	5.2	4.7	4.4	4.1	3.8

^{*} The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

A7P-10 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY
A7P-10	9.5 Fluid Ounce Cartridge with nozzle	6
A24S	Mixing Nozzle for A7P-10 Cartridge Nozzle diameter fits 3/8" to 5/8" holes (overall length of nozzle 6-3/8")	24
A100	Hand Dispenser for A7P-10 Cartridge (26:1 Thrust Ratio)	1

Refer to page RH 34 for ordering information on wire brushes, brush extensions, and blow pump for deep holes.

PACKAGING

- Disposable, self-contained cartridge system capable of dispensing both components in the proper mixing ratio
- The two components are dispensed through a static mixing nozzle that thoroughly mixes the material and places the material at the base of the pre-drilled hole
- Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

HYBRID ADHESIVE:

High Strength HYBRID ADHESIVE: ARRA Certified

- 1. Two component vinyl ester adhesive, non-sag paste, moisture insensitive when cured, dark gray in color, fast cure times.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, submerged holes.
- 4. Shelf life: Best if used within 18 months.
- 5. All weather, cure time (45 min. at 21°C).
- 6. Dispenses easier and faster.
- 7. Dispenses and cures faster in hot weather, but works in cold weather.
- 8. Pumpable at -10°C without preheating.
- 9. Formula for use in solid and hollow base materials.
- 10. Suitable for oversized and diamond cored holes with increased depths.
- 11. Quick insertion time = less labor cost.

ESTIMATING TABLES

A7+ 10 Fluid Ounce Cartridge

Number of Anchoring Installations per Cartridge* Using Reinforcing Bar and Threaded Rod with A7+ Adhesive in Solid Concrete

REBAR	DRILL	El	MBEDMENT DEPT	H IN INCHES (mn	n)
	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)
# 3	7/16	100.1	50.0	33.4	25.0
# 4	5/8	49.0	24.5	16.3	12.3
# 5	3/4	34.0	17.0	11.3	8.5
# 6	7/8	25.0	12.5	8.3	6.3
#7	1	19.2	9.6	6.4	4.8
#8	1-1/8	15.1	7.6	5.0	3.8

The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

Rod	DRILL	E	MBEDMENT DEPT	'H IN INCHES (mı	n)
In. (mm)	HOLE DIA.	2	4	6	8
	INCHES	(50.8)	(101.6)	(152.4)	(203.2)
3/8 (9.5)	7/16	100.1	50.0	33.4	25.0
1/2 (12.7)	9/16	60.5	30.3	20.2	15.1
5/8 (15.9)	11/16	40.5	20.3	13.5	10.1
	3/4	34.0	17.0	11.3	8.5
3/4 (19.1)	13/16	29.0	14.5	9.7	7.3
	7/8	25.0	12.5	8.3	6.3
7/8 (22.2)	15/16	21.8	10.9	7.3	5.4
	1	19.2	9.6	6.4	4.8
1 (25.4)	1-1/16	17.0	8.5	5.7	4.2
	1-1/8	15.1	7.6	5.0	3.8

A7+ Hybrid Adhesive

Factored Steel Strength for Threaded Rod

Thread	led Rod		Te	nsion l	κN (lb), Nsa	r³			!	Shear k	N (lb) Vsar	4			Seismic S	hear k	N (lb), Vsar,	i	
Dia. Ir	n. (mm)		on Steel \36 ¹		on Steel 93 B7 ¹	Stainless F593 ²			on Steel A36 ¹		on Steel 93 B7 ¹		ainless 593²		on Steel 136 ¹		on Steel 93 B7¹		ninless 593 ²
3/8	(9.5)	14	(3,060)	29	(6,589)	19	(4,382)	6	(1,434)	14	(3,089)	9	(2,033)	4	(1,004)	10	(2,162)	6	(1,423)
1/2	(12.7)	25	(5,596)	54	(12,063)	36	(8,021)	14	(3,149)	30	(6,783)	17	(3,724)	10	(2,204)	21	(4,748)	12	(2,607)
5/8	(15.9)	40	(8,915)	85	(19,210)	57	(12,775)	22	(5,017)	48	(10,806)	26	(5,931)	16	(3,512)	34	(7,564)	18	(4,152)
3/4	(19.1)	59	(13,192)	126	(28,431)	67	(15,104)	33	(7,421)	71	(15,995)	31	(7,011)	23	(5,194)	50	(11,196)	22	(4,908)
7/8	(22.2)	81	(18,210)	175	(39,243)	93	(20,890)	46	(10,245)	98	(22,077)	43	(9,699)	32	(7,171)	69	(15,454)	30	(6,789)
1	(25.4)	106	(23,888)	229	(51,483)	122	(27,403)	60	(13,439)	129	(28,962)	57	(12,724)	42	(9,407)	90	(20,273)	40	(8,907)
1-1/4	(31.8)	170	(38,223)	366	(82,375)	195	(43,819)	96	(21,503)	206	(46,334)	90	(20,343)	67	(15,052)	144	(32,433)	63	(14,240)

- 1 Values correspond to a ductile steel element
- 3 Tension values calculated according to Cl. D6.1.2 in CSA A23.3-14 Annex D
- 5 Seismic shear was calculated according to Vsar*aV,seis

- 2 Values correspond to a brittle steel element
- 4 Shear values calculated according to Cl. D7.1.2 in CSA A23.3-14 Annex D

A7+ Hybrid Adhesive

Concrete Breakout and Bond Strength for Threaded Rod

	Symbol	Units			Nominal	Rod Diameter	In. (mm)		
Nominal Anchor Diameter	do		3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)	7/8 (22.2)	1 (25.4)	1-1/4 (31.8)
			Concrete	Breakout					
Effectiveness factor for uncracked concrete	k _{uncr}	_				10			
Effectiveness factor for cracked concrete	k _{cr}	_				7			
Modifcation factor for cracked and uncracked	Ψ _{c, N}	_				1			
Minimum concrete thickness	h _{min}	mm	h _{ef} +	31.75			h _{ef} + 2d		
Anchor embedment depth — minimum	h _{ef,min}	mm	60.3	69.9	79.4	88.9	88.9	101.6	127.0
Minimum spacing	S _{min}	mm	23.8	38.1	63.5	76.2	88.9	101.6	127.0
Minimum edge distance	C _{min}	mm	23.8	38.1	63.5	76.2	88.9	101.6	127.0
Critical edge distance	C _{ac}	mm		Se	ee Section 4.1.10	of the evaluatio	n report ESR 390)3	
Material resistance factor for concrete	Фс	_				0.65			
Strength reduction factor for tension,	R	Cond. A				1.15			
concrete failure modes 3,4	R	Cond. B				1			
Strength reduction factor for shear,	R	Cond. A				1.15			
concrete failure modes 3,4	R	Cond. B				1			
Modification Factor for concrete density	λ	_				1			

				Bond Stren	gth					
	Nominal Rod Diameter In. (mm)			3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)	7/8 (22.2)	1 (25.4)	1-1/4 (31.8)
emperature Range A¹	Characteristic Bond Strength for Uncracked Concrete	$T_{k,uncr}$	MPa (psi)	12.2 (1770)	12.2 (1770)	12.2 (1770)	12.2 (1770)	10.3 (1490)	10.3 (1490)	10.3 (1490)
Temperature Range A ¹	Characteristic Bond Strength for Cracked Concrete	$T_{k,cr}$	MPa (psi)	7.3 (1060)	5.4 (790)	5.9 (860)	6.1 (885)	4.8 (695)	4.5 (655)	4.0 (585)
Temperature Range B ²	Characteristic Bond Strength for Uncracked Concrete	$T_{k,uncr}$	MPa (psi)	8.8 (1275)	8.8 (1275)	8.8 (1275)	8.8 (1275)	7.4 (1080)	7.4 (1080)	7.4 (1080)
Tempe Rang	Characteristic Bond Strength for Cracked Concrete	$T_{k,cr}$	MPa (psi)	5.3 (1080)	3.9 (570)	4.3 (620)	4.4 (640)	3.4 (500)	3.3 (475)	2.9 (420)
Sr	Strength Reduction Factor — Dry Concrete	$\Phi_{ ext{dry, ci}}$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Continuous Inspection	Strength Reduction Factor — Water-Saturated Concrete	Φ _{sat, ci}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Cont	Strength Reduction Factor — Water-Filled Holes	$\Phi_{\text{wf, ci}}$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor — Submerged Concrete	$\Phi_{\text{sub, ci}}$	-	0.65	0.55	0.55	0.65	0.65	0.55	0.65
=	Strength Reduction Factor — Dry Concrete	$\Phi_{\text{dry, pi}}$	-	0.55	0.55	0.55	0.55	0.55	0.55	0.65
Periodic Inspection	Strength Reduction Factor — Water-Saturated Concrete		_	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Per Insp		Φ _{wf, pi}		0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor — Submerged Concrete	$\Phi_{\text{sub, pi}}$	-	0.65	0.45	0.45	0.65	0.55	0.45	0.65
Reducti	ion factor for seismic tension	$a_{N,seis}$	_	0.89	0.75	0.76	0.66	0.77	0.80	0.80

- 1 Temperature Range A: Max short term temperature = 130° F (55°C), max long term temperature = 110° F (43°C)
- 2 Temperature Range B: Max short term temperature = 176°F (80°C), max long term temperature = 110°F (43°C)
- 3 Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member except where pullout or pryout resistance governs
- $4 \ \ Condition \ B \ applies \ where \ supplementary \ reinforcement \ is \ not \ provided \ or \ where \ pullout \ or \ pryout \ strength \ governs$

A7+ Hybrid Adhesive Factored Steel Strength for Reinforcing Bars, kN (lbf)

	AS	TM A615 Grade 60 Reb	ar			CSA G30.18 Grade 400	
US Rebar Size	Tension In. (mm)	Shear In. (mm)	Seismic Shear In. (mm)	CA Rebar Size	Tension In. (mm)	Shear In. (mm)	Seismic Shear In. (mm)
No. 3	29.9 (6,732)	16.8 (3,787)	135.6 (3,446)	10M	37 (8.255)	21 (4,643)	14 (3,250)
No. 4	54.4 (12,240)	30.6 (6,885)	28.0 (6.265)	15M	73 (16,510)	41 (9,287)	29 (6,501)
No. 5	84.4 (18,972)	47.5 (10,672)	43.0 (9,711)	20M	110 (24,765)	62 (13,930)	43 (9,751)
No. 6	119.8 (26,928)	67.4 (15,147)	61.0 (13,632)	25M	184 (41,275)	103 (23,217)	72 (16,252)
No. 7	163.3 (36,720)	91.9 (20,655)	83.0 (18,590)	30M	257 (57,785)	145 (32,504)	101 (22,753)
No. 8	215.1 (48,348)	121.0 (27.196)	86.0 (19,309)	'	le steel element per standards a		
No. 9	272.2 (61,200)	153.1 (34,425)	109.0 (24,442)		cording to Cl. D6.1.2 in CSA A23. rding to Cl. D7.1.2 in CSA A23.3-		

138.0 (31,041)

A7+ Hybrid Adhesive

345.7 (77.724)

194.5 (43,720)

No. 10

Concrete Breakout and Bond Strength for Rebar

4 Seismic shear was calculated according to Vsar*aV,seis

	Symbol	Units				Reinforcing S	Steel Bar Size			
Nominal Anchor Size	do		No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 9
				Concrete Brea	kout					
Effectiveness factor for uncracked concrete	k _{uncr}	-				1	0			
Effectiveness factor for cracked concrete	k _{cr}	-				-	7			
Minimum concrete thickness	h _{min}	mm	h _{ef} +	31.75			h _{ef} +	- 2do		
Anchor embedment depth — minimum	$h_{ef,min}$	mm	60.3	69.9	79.4	88.9	88.9	101.6	114.3	127.0
Minimum spacing	S _{min}	mm	23.8	38.1	63.5	76.2	88.9	101.6	114.3	127.0
Minimum edge distance	C _{min}	mm	23.8	38.1	63.5	76.2	88.9	101.6	114.3	127.0
Critical edge distance	C _{ac}	mm			See Section	n 4.1.10 of the 6	evaluation repo	rt ESR 3903		
Material resistance factor for concrete	Фс	-				0.	65			
Strength reduction factor for tension,	R	Cond. A				1.	15			
concrete failure modes ^{3,4}	R	Cond. B	-				1			
Strength reduction factor for shear, concrete	R	Cond. A				1.	15			
failure modes ^{3,4}	R	Cond. B					1			
Modification Factor for concrete density	λ	_					1			

			В	ond Streng	th						
	Nominal Anchor Size			No. 3	No. 4	No. 5	No. 6	No. 7	No.8	No. 9	No. 10
Temperature Range A ²	Characteristic Bond Strength for Uncracked Concrete	T _{k,uncr}	MPa (psi)	11.5 (1675)	13.3 (1935)	13.1 (1900)	11.7 (1700)	11.3 (1635)	11.1 (1615)	10.9 (1585)	10.7 (1550)
Temperat Range	Characteristic Bond Strength for Cracked Concrete	T _{k,cr}	MPa (psi)	5.2 (755)	5.2 (755)	5.2 (755)	4.0 (585)	4.0 (585)	4.0 (585)	4.0 (585)	4.2 (605)
Temperature Range B ^{3,4}	Characteristic Bond Strength for Uncracked Concrete	$T_{k,uncr}$	MPa (psi)	8.3 (1210)	9.6 (1395)	9.5 (1210)	8.5 (1230)	8.1 (1180)	8.0 (1165)	7.9 (1145)	7.7 (1120)
Tempe Rang	Characteristic Bond Strength for Cracked Concrete	$T_{k,cr}$	MPa (psi)	3.8 (545)	3.8 (545)	3.8 (545)	2.9 (420)	2.9 (420)	2.9 (420)	2.9 (420)	3.0 (435)
Sn us	Strength Reduction Factor — Dry Concrete	Φ _{dry, ci}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Continuous Inspection	Strength Reduction Factor — Water-Saturated Concrete	Φ _{sat, ci}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Sont l	Strength Reduction Factor — Water-Filled Holes	Φ _{wf, ci}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor — Submerged Concrete	Φ _{sub, ci}	-	0.65	0.55	0.55	0.65	0.65	0.55	0.55	0.65
⊑	Strength Reduction Factor — Dry Concrete	Φ _{dry, pi}	_	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.65
Periodic nspection	Strength Reduction Factor — Water-Saturated Concrete	Φ _{sat, pi}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Per Insp	Strength Reduction Factor — Water-Filled Holes	Φ _{wf, pi}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor — Submerged Concrete	Φ _{sub, pi}	_	0.65	0.45	0.45	0.65	0.55	0.45	0.45	0.65
Reduction	Reduction factor for seismic tension			0.92	0.92	0.92	0.82	0.82	0.82	0.82	0.83

¹ Temperature Range A: Max short term temperature = 130°F (55°C), max long term temperature = 110°F (43°C)

Combined Tension and Shear Loading—for A7+ Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. For combined tension and shear loading, please see Section 4.2.2 of ICC ESR 3903

² Temperature Range B: Max short term temperature = 176°F (80°C), max long term temperature = 110°F (43°C)

³ Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member except where pullout or pryout resistance governs

⁴ Condition B applies where supplementary reinforcement is not provided or where pullout or pryout strength governs

A7+ Hybrid Adhesive

Factored Concrete Breakout/Bond Failure Strength for Threaded Rod Tension, kN (lbf)

Nominal anchor	Effective			UNCRA	ACKED					CRAC	KED		
diameter In. (mm)	Embedment In. (mm)	f'c = 20 Mp (2900 psi)		f'c = 30 (4350		f'c = 4 (5800		f'c = 2 (2900		f'c = 3 (4350		f'c = 4 (5800	
3/8 (9.5)	2-3/8 (60)	13.6 (3	3,060)	14.3	(3,215)	14.3	(3,215)	8.6	(1,925)	8.6	(1,925)	8.6	(1,925)
	3-3/8 (86)	20.3 (4	1,570)	20.3	(4,570)	20.3	(4,570)	12.2	(2,735)	12.2	(2,735)	12.2	(2,735)
	4-1/2 (114)	27.1 (6	5,095)	27.1	(6,095)	27.1	(6,095)	16.2	(3,645)	16.2	(3,645)	16.2	(3,645)
	7-1/2 (191)	45.2 (10),160)	45.2	(10,160)	45.2	(10,160)	27.0	(6,075)	27.0	(6,075)	27.0	(6,075)
1/2 (12.7)	2-3/4 (70)		3,815)	20.8	(4,670)	22.1	(4,965)	9.9	(2,220)	9.9	(2,220)	9.9	(2,220)
	4-1/2 (114)	35.5 (7	7,985)	36.2	(8,130)	36.2	(8,130)	16.1	(3,630)	16.1	(3,630)	16.1	(3,630)
	6 (152)	48.2 (10),835)	48.2	(10,835)	48.2	(10,835)	21.5	(4,840)	21.5	(4,840)	21.5	(4,840)
	10 (254)		3,060)	80.3	(18,060)	80.3	(18,060)	35.9	(8,065)	35.9	(8,065)	35.9	(8,065)
5/8 (15.9)	3-1/8 (79)	20.6 (4	1,620)	25.2	(5,660)	29.1	(6,535)	14.4	(3,235)	15.2	(3,425)	15.2	(3,425)
	5-5/8 (143)		,160)	56.5	(12,700)	56.5	(12,700)	27.4	(6,165)	27.4	(6,165)	27.4	(6,165)
	7-1/2 (191)		5,935)	75.3	(16,935)	75.3	(16,935)	36.6	(8,220)	36.6	(8,220)	36.6	(8,220)
	12-1/2 (318)		/ /	125.5	(28,220)	125.5	(28,220)	61.0	(13,705)	61.0	(13,705)	61.0	(13,705)
3/4 (19.1)	3-1/2 (89)	24.4 (5	5,480)	29.8	(6,710)	34.5	(7,745)	17.1	(3,835)	20.9	(4,695)	21.1	(4,755)
	6-3/4 (171)		,670)	79.9	(17,970)	81.3	(18,290)	40.8	(9,170)	40.8	(9,170)	40.8	(9,170)
	9 (229)	100.5 (22	2,585) 1	108.5	(24,385)	108.5	(24,385)	54.4	(12,225)	54.4	(12,225)	54.4	(12,225)
	15 (381)	180.8 (40),640) 1	180.8	(40,640)	180.8	(40,640)	90.6	(20,375)	90.6	(20,375)	90.6	(20,375)
7/8 (22.2)	3-1/2 (89)	24.4 (5	,480)	29.8	(6,710)	34.5	(7,745)	17.1	(3,835)	19.3	(4,335)	19.3	(4,335)
	7-7/8 (200)		3,485)	93.4	(20,995)	93.4	(20,995)	43.4	(9,750)	43.4	(9,750)	43.4	(9,750)
	10-1/2 (267)	124.5 (27	7,990) 1	124.5	(27,990)	124.5	(27,990)	57.8	(13,000)	57.8	(13,000)	57.8	(13,000)
	17-1/2 (445)	207.5 (46	5,655) 2	207.5	(46,655)	207.5	(46,655)	96.4	(21,670)	96.4	(21,670)	96.4	(21,670)
1 (25.4)	4 (102)		,690)	36.5	(8,195)	42.1	(9,465)	20.8	(4,685)	23.8	(5,350)	23.8	(5,350)
	9 (229)	100.5 (22	2,585) 1	122.0	(27,420)	122.0	(27,420)	53.5	(12,040)	53.5	(12,040)	53.5	(12,040)
	12 (305)	154.7 (34	,775) 1	162.6	(36,560)	162.6	(36,560)	71.4	(16,050)	71.4	(16,050)	71.4	(16,050)
	20 (508)		7 7	271.0	(60,935)	271.0	(60,935)	119.0	(26,750)	119.0	(26,750)	119.0	(26,750)
1-1/4 (31.8)	5 (127)	41.6 (9),355)	51.0	(11,455)	58.8	(13,225)	29.1	(6,545)	33.1	(7,440)	33.1	(7,440)
	11-1/4 (286)	140.4 (31	,565) 1	172.0	(38,660)	190.6	(42,845)	74.5	(16,740)	74.5	(16,740)	74.5	(16,740)
	15 (381)	216.2 (48	3,600) 2	254.1	(57,125)	254.1	(57,125)	99.3	(22,320)	99.3	(22,320)	99.3	(22,320)
	25 (635)	423.5 (95	5,210) 4	123.5	(95,210)	423.5	(95,210)	165.5	(37,205)	165.5	(37,205)	165.5	(37,205)

A7+ Hybrid Adhesive

Factored Concrete Breakout/Bond Failure Strength for Threaded Rod Shear, kN (lbf)

Nominal anchor	Effective		UNCRACKED			CRACKED	
diameter In. (mm)	Embedment In. (mm)	f'c = 20 Mpa (2900 psi)	f'c = 30 Mpa (4350 psi)	f'c = 40 Mpa (5800 psi)	f'c = 20 Mpa (2900 psi)	f'c = 30 Mpa (4350 psi)	f'c = 40 Mpa (5800 psi)
3/8 (9.5)	2-3/8 (60)	13.6 (3,060)	14.3 (3,215)	14.3 (3,215)	8.6 (1,925)	8.6 (1,925)	8.6 (1,925)
	3-3/8 (86)	40.7 (9,145)	40.7 (9,145)	40.7 (9,145)	24.3 (5,470)	24.3 (5,470)	24.3 (5,470)
	4-1/2 (114)	54.2 (12,190)	54.2 (12,190)	54.2 (12,190)	32.4 (7,290)	32.4 (7,290)	32.4 (7,290)
	7-1/2 (191)	90.4 (20,320)	90.4 (20,320)	90.4 (20,320)	54.1 (12,155)	54.1 (12,155)	54.1 (12,155)
1/2 (12.7)	2-3/4 (70)	33.9 (7,630)	41.6 (9,345)	44.2 (9,935)	19.7 (4,435)	19.7 (4,435)	19.7 (4,435)
	4-1/2 (114)	71.0 (15,970)	72.3 (16,255)	72.3 (16,255)	32.3 (7,260)	32.3 (7,260)	32.3 (7,260)
	6 (152)	96.4 (21,675)	96.4 (21,675)	96.4 (21,675)	43.1 (9,680)	43.1 (9,680)	43.1 (9,680)
	10 (254)	160.7 (36,125)	160.7 (36,125)	160.7 (36,125)	71.8 (16,130)	71.8 (16,130)	71.8 (16,130)
5/8 (15.9)	3-1/8 (79)	41.1 (9,245)	50.4 (11,320)	58.1 (13,070)	28.8 (6,470)	30.5 (6,855)	30.5 (6,855)
	5-5/8 (143)	99.3 (22,320)	113.0 (25,400)	113.0 (25,400)	54.9 (12,335)	54.9 (12,335)	54.9 (12,335)
	7-1/2 (191)	150.6 (33,865)	150.6 (33,865)	150.6 (33,865)	73.1 (16,445)	73.1 (16,445)	73.1 (16,445)
	12-1/2 (318)	251.1 (56,445)	251.1 (56,445)	251.1 (56,445)	121.9 (27,410)	121.9 (27,410)	121.9 (27,410)
3/4 (19.1)	3-1/2 (89)	48.7 (10,955)	59.7 (13,420)	68.9 (15,495)	34.1 (7,670)	41.8 (9,390)	42.3 (9,510)
	6-3/4 (171)	130.5 (29,340)	159.8 (35,935)	162.7 (36,575)	81.6 (18,340)	81.6 (18,340)	81.6 (18,340)
	9 (229)	200.9 (45,175)	216.9 (48,765)	216.9 (48,765)	108.8 (24,450)	108.8 (24,450)	108.8 (24,450)
	15 (381)	361.5 (81,280)	361.5 (81,280)	361.5 (81,280)	181.3 (40,755)	181.3 (40,755)	181.3 (40,755)
7/8 (22.2)	3-1/2 (89)	48.7 (10,955)	59.7 (13,420)	68.9 (15,495)	34.1 (7,670)	38.6 (8,670)	38.6 (8,670)
	7-7/8 (200)	164.5 (36,975)	186.8 (41,990)	186.8 (41,990)	86.8 (19,500)	86.8 (19,500)	86.8 (19,500)
	10-1/2 (267)	249.0 (55,985)	249.0 (55,985)	249.0 (55,985)	115.7 (26,005)	115.7 (26,005)	115.7 (26,005)
	17-1/2 (445)	415.0 (93,305)	415.0 (93,305)	415.0 (93,305)	192.8 (43,340)	192.8 (43,340)	192.8 (43,340)
1 (25.4)	4 (102)	59.5 (13,385)	72.9 (16,395)	84.2 (18,930)	41.7 (9,370)	47.6 (10,700)	47.6 (10,700)
	9 (229)	200.9 (45,175)	243.9 (54,840)	243.9 (54,840)	107.1 (24,075)	107.1 (24,075)	107.1 (24,075)
	12 (305)	309.4 (69,550)	325.3 (73,120)	325.3 (73,120)	142.8 (32,100)	142.8 (32,100)	142.8 (32,100)
	20 (508)	542.1 (121,870)	542.1 (121,870)	542.1 (121,870)	238.0 (53,500)	238.0 (53,500)	238.0 (53,500)
1-1/4 (31.8)	5 (127)	83.2 (18,705)	101.9 (22,910)	117.7 (26,455)	58.2 (13,095)	66.2 (14,880)	66.2 (14,880)
, ,	11-1/4 (286)	280.8 (63,135)	343.9 (77,320)	381.2 (85,690)	148.9 (33,485)	148.9 (33,485)	148.9 (33,485)
	15 (381)	432.4 (97,200)	508.2 (114,250)	508.2 (114,250)	198.6 (44,645)	198.6 (44,645)	198.6 (44,645)
	25 (635)	847.0 (190,420)	847.0 (190,420)	847.0 (190,420)	331.0 (74,405)	331.0 (74,405)	331.0 (74,405)

- 1 These load values are for the purposes of estimation only and should not be used in design 2 Assuming single anchor with no edge or spacing distances, nor environmental factors that would reduce the load.
- 3 Design loads include their respective Oc and Os material resistance factors for concrete and steel from CSA A23.3-14 Cl. 8.4.2 and 8.4.3
- 4 Design loads include their respective strength reduction factor for dry, water saturated and water filled hole conditions. Refer to design information table for threaded rod for submerged conditions (Osub).
- 5 All design loads are calculated according to Condition B for concrete failure mode factor R
- 6 Temperature Range A (long term temperature 43°C, short term temperature 85°C) 7 Temperature Range B (long term temperature 43°C, short term temperature 80°C)
- 8 Values for continuous inspection with dry, water saturated or water filled concrete

A7+ Hybrid Adhesive

Factored Concrete Breakout/Bond Failure Strength for Reinforcing Bars Tension, kN (lbf)

								31011, IX	14 (161)				
US Rebar Size	Effective			UNCR	ACKED					CRA	CKED		
(mm)	Embedment In. (mm)	f'c = 20 (2900			80 Mpa 0 psi)		10 Mpa 0 psi)		20 Mpa 0 psi)		0 Mpa 0 psi)		10 Mpa 0 psi)
#3 (9.5)	3-1/2 (89)	20.0	(4,490)	20.0	(4,490)	20.0	(4,490)	9.0	(2,020)	9.0	(2,020)	9.0	(2,020)
	4-1/2 (114)	25.7	(5,770)	25.7	(5,770)	25.7	(5,770)	11.5	(2,595)	11.5	(2,595)	11.5	(2,595)
	7-1/2 (191)	42.8	(9,620)	42.8	(9,620)	42.8	(9,620)	19.2	(4,325)	19.2	(4,325)	19.2	(4,325)
#4 (12.7)	4-1/2 (114)	35.5	(7,985)	39.5	(8,885)	39.5	(8,885)	15.4	(3,460)	15.4	(3,460)	15.4	(3,460)
	6 (152)	52.7	(11,850)	52.7	(11,850)	52.7	(11,850)	20.5	(4,615)	20.5	(4,615)	20.5	(4,615)
	10 (254)	87.8	(19,745)	87.8	(19,745)	87.8	(19,745)	34.2	(7,690)	34.2	(7,690)	34.2	(7,690)
# 5 (15.9)	5-3/4 (146)	51.3	(11,535)	62.0	(13,930)	62.0	(13,930)	24.6	(5,525)	24.6	(5,525)	24.6	(5,525)
	7-1/2 (191)	76.4	(17,185)	80.8	(18,170)	80.8	(18,170)	32.1	(7,210)	32.1	(7,210)	32.1	(7,210)
	12-1/2 (318)	134.7	(30,280)	134.7	(30,280)	134.7	(30,280)	53.4	(12,015)	53.4	(12,015)	53.4	(12,015)
#6 (19.1)	6-3/4 (171)	65.3	(14,670)	78.2	(17,575)	78.2	(17,575)	26.9	(6,050)	26.9	(6,050)	26.9	(6,050)
	9 (229)	100.5	(22,585)	104.2	(23,430)	104.2	(23,430)	35.9	(8,065)	35.9	(8,065)	35.9	(8,065)
	15 (381)	173.7	(39,055)	173.7	(39,055)	173.7	(39,055)	59.8	(13,440)	59.8	(13,440)	59.8	(13,440)
#7 (22.2)	8 (203)	84.2	(18,930)	103.1	(23,185)	104.0	(23,370)	37.2	(8,360)	37.2	(8,360)	37.2	(8,360)
	10-1/2 (267)	126.6	(28,465)	136.4	(30,675)	136.4	(30,675)	48.8	(10,975)	48.8	(10,975)	48.8	(10,975)
	17-1/2 (445)	227.4	(51,125)	227.4	(51,125)	227.4	(51,125)	81.4	(18,290)	81.4	(18,290)	81.4	(18,290)
#8 (25.4)	9 (229)	100.5	(22,585)	123.1	(27,665)	131.9	(29,645)	47.8	(10,750)	47.8	(10,750)	47.8	(10,750)
. ,	13 (330)	174.4	(39,210)	190.5	(42,820)	190.5	(42,820)	69.1	(15,530)	69.1	(15,530)	69.1	(15,530)
	20 (508)	293.0	(65,875)	293.0	(65,875)	293.0	(65,875)	106.3	(23,890)	106.3	(23,890)	106.3	(23,890)
#9 (28.6)	10-1/2 (267)	126.6	(28,465)	155.1	(34,860)	170.1	(38,235)	62.8	(14,110)	62.8	(14,110)	62.8	(14,110)
	13-1/2 (343)	184.6	(41,495)	218.7	(49,155)	218.7	(49,155)	80.7	(18,145)	80.7	(18,145)	80.7	(18,145)
	20 (508)	323.9	(72,825)	323.9	(72,825)	323.9	(72,825)	119.6	(26,880)	119.6	(26,880)	119.6	(26,880)
# 10 (32.2)	12 (305)	154.7	(34,775)	189.5	(42,590)	211.1	(47,445)	82.2	(18,470)	82.2	(18,470)	82.2	(18,470)
	15 (381)	216.2	(48,600)	263.8	(59,310)	263.8	(59,310)	102.7	(23,090)	102.7	(23,090)	102.7	(23,090)
	25 (635)	439.7	(98,850)	439.7	(98,850)	439.7	(98,850)	171.2	(38,480)	171.2	(38,480)	171.2	(38,480)

A7+ Hybrid Adhesive

Factored Concrete Breakout/Bond Failure Strength for Reinforcing Bars Shear, kN (lbf)

US Rebar Size	Effective			UNCR	ACKED					CRAC	KED		
(mm)	Embedment In. (mm)	f'c = 20 (2900 p			80 Mpa 0 psi)		10 Mpa 0 psi)		O Mpa O psi)	f'c = 3 (435)		f'c = 4 (580	
#3 (9.5)	3-1/2 (89)	39.9	(8,980)	39.9	(8,980)	39.9	(8,980)	18.0	(4,035)	18.0	(4,035)	18.0	(4,035)
	4-1/2 (114)	51.3	(11,545)	51.3	(11,545)	51.3	(11,545)	23.1	(5,190)	23.1	(5,190)	23.1	(5,190)
	7-1/2 (191)	85.6	(19,240)	85.6	(19,240)	85.6	(19,240)	38.5	(8,650)	38.5	(8,650)	38.5	(8,650)
# 4 (12.7)	4-1/2 (114)	71.0	(15,970)	79.1	(17,770)	79.1	(17,770)	30.8	(6,920)	30.8	(6,920)	30.8	(6,920)
	6 (152)	105.4	(23,695)	105.4	(23,695)	105.4	(23,695)	41.0	(9,225)	41.0	(9,225)	41.0	(9,225)
	10 (254)	175.7	(39,495)	175.7	(39,495)	175.7	(39,495)	68.4	(15,375)	68.4	(15,375)	68.4	(15,375)
# 5 (15.9)	5-3/4 (146)	102.6	(23,070)	123.9	(27,855)	123.9	(27,855)	49.2	(11,050)	49.2	(11,050)	49.2	(11,050)
	7-1/2 (191)	152.9	(34,365)	161.6	(36,335)	161.6	(36,335)	64.1	(14,415)	64.1	(14,415)	64.1	(14,415)
	12-1/2 (318)	269.4	(60,560)	269.4	(60,560)	269.4	(60,560)	106.9	(24,025)	106.9	(24,025)	106.9	(24,025)
#6 (19.1)	6-3/4 (171)	130.5	(29,340)	156.3	(35,150)	156.3	(35,150)	53.8	(12,095)	53.8	(12,095)	53.8	(12,095)
	9 (229)	200.9	(45,175)	208.5	(46,865)	208.5	(46,865)	71.7	(16,125)	71.7	(16,125)	71.7	(16,125)
	15 (381)	347.4	(78,110)	347.4	(78,110)	347.4	(78,110)	119.6	(26,880)	119.6	(26,880)	119.6	(26,880)
#7 (22.2)	8 (203)	168.4	(37,860)	206.2	(46,365)	207.9	(46,740)	74.4	(16,725)	74.4	(16,725)	74.4	(16,725)
	10-1/2 (267)	253.2	(56,925)	272.9	(61,350)	272.9	(61,350)	97.6	(21,950)	97.6	(21,950)	97.6	(21,950)
	17-1/2 (445)	454.8 (102,250)	454.8	(102,250)	454.8	(102,250)	162.7	(36,585)	162.7	(36,585)	162.7	(36,585)
#8 (25.4)	9 (229)	200.9	(45,175)	246.1	(55,325)	263.7	(59,290)	95.6	(21,505)	95.6	(21,505)	95.6	(21,505)
	13 (330)	348.8	(78,420)	380.9	(85,640)	380.9	(85,640)	138.2	(31,060)	138.2	(31,060)	138.2	(31,060)
	20 (508)	586.1 (131,755)	586.1	(131,755)	586.1	(131,755)	212.6	(47,785)	212.6	(47,785)	212.6	(47,785)
# 9 (28.6)	10-1/2 (267)	253.2	(56,925)	310.1	(69,720)	310.1	(69,720)	125.5	(28,220)	125.5	(28,220)	125.5	(28,220)
, ,	13-1/2 (343)	369.2	(82,990)	437.3	(98,315)	437.3	(98,315)	161.4	(36,285)	161.4	(36,285)	161.4	(36,285)
	20 (508)	647.9 (145,650)	647.9	(145,650)	647.9	(145,650)	239.1	(53,755)	239.1	(53,755)	239.1	(53,755)
# 10 (32.2)	12 (305)	309.4	(69,550)	378.9	(85,180)	422.1	(94,895)	164.3	(36,940)	164.3	(36,940)	164.3	(36,940)
	15 (381)	432.4	(97,200)	527.6	(118,615)	527.6	(118,615)	205.4	(46,175)	205.4	(46,175)	205.4	(46,175)
	25 (635)	879.4 (197,695)	879.4	(197,695)	879.4	(197,695)	342.3	(76,960)	342.3	(76,960)	342.3	(76,960)

- 1 These load values are for the purposes of estimation only and should not be used in design
 2 Assuming single anchor with no edge or spacing distances, nor environmental factors that would reduce the load.
 3 Design loads include their respective Oc and Os material resistance factors for concrete and steel from CSA A23.3-14 Cl. 8.4.2 and 8.4.3
- 4 Design loads include their respective strength reduction factor for dry, water saturated and water filled hole conditions. Refer to design information table for threaded rod for submerged conditions (Osub).
- 5 All design loads are calculated according to Condition B for concrete failure mode factor R 6 Temperature Range A (long term temperature 43°C, short term temperature 55°C) 7 Temperature Range B (long term temperature 43°C, short term temperature 80°C)
- 8 Values for continuous inspection with dry, water saturated or water filled concrete

A7+ Hybrid Adhesive Loads Installed in Solid Concrete

ANCHOR DIAMETER In. (mm)		EMBEDMENT DEPTH In. (mm)		CRITICAL EDGE DISTANCE In. (mm) (100% LOAD CAPACITY)		INTERPOLATED EDGE DISTANCE In. (mm) (80% LOAD CAPACITY)		INTERPOLATED EDGE DISTANCE In. (mm) (50% LOAD CAPACITY)		MINIMUM EDGE DISTANCE In. (mm) (10% LOAD CAPACITY)	
3/8	(9.5)	3-3/8	(85.7)	4-3/16	(106.4)	3-7/16	(87.3)	2-5/16	(58.7)	13/16	(20.6)
1/2	(12.7)	4-1/2	(114.3)	5-5/8	(142.9)	4-5/8	(117.5)	3-1/8	(79.4)	1-1/8	(28.6)
5/8	(15.9)	5-5/8	(142.9)	7	(177.8)	5-3/4	(146.1)	3-1/8	(79.4)	1-3/8	(34.9)
3/4	(19.1)	6-3/4	(171.5)	8-7/16	(214.2)	6-15/16	(176.2)	4-5/8	(117.5)	1-5/8	(41.3)
1	(25.4)	9	(228.6)	11-1/4	(285.8)	9-1/4	(235.0)	6-1/4	(158.8)	2-1/4	(57.2)
1-1/4	(31.8)	11-1/4	(285.8)	14-1/16	(357.2)	11-5/8	(295.3)	7-7/8	(200.0)	2-7/8	(73.0)

A7+ Hybrid Adhesive Tension Loads Installed in Solid Concrete

DIA	ANCHOR DIAMETER In. (mm)		EMBEDMENT DEPTH In. (mm)		CRITICAL EDGE DISTANCE In. (mm) (100% LOAD CAPACITY)		INTERPOLATED EDGE DISTANCE In. (mm) (90% LOAD CAPACITY)		INTERPOLATED EDGE DISTANCE In. (mm) (80% LOAD CAPACITY)		MINIMUM EDGE DISTANCE In. (mm) (70% LOAD CAPACITY)	
3/8	(9.5)	3-3/8 4-1/2	(85.7) (114.3)	2-1/2 3-3/8	(63.5) (85.7)	1-15/16 2-5/8	(49.2) (66.7)	1-3/8 1-7/8	(34.9) (47.6)	13/16 1-1/8	(26.2) (28.6)	
1/2	(12.7)	4-1/2 6	(114.3) (152.4)	3-3/8 4-1/2	(85.7) (114.3)	2-5/8 3-1/2	(66.7) (88.9)	1-7/8 2-1/2	(47.6) (63.5)	1-1/8 1-1/2	(28.6) (38.1)	
5/8	(15.9)	5-5/8 7-1/2	(142.9) (190.5)	4-3/16 5-5/8	(106.4) (142.9)	3-1/4 4-3/8	(82.6) (111.1)	2-5/16 3-1/8	(58.7) (79.4)	1-3/8 1-7/8	(34.9) (47.6)	
3/4	(19.1)	6-3/4 9	(171.5) (228.6)	5-1/16 6-3/4	(128.6) (171.5)	3-15/16 5-1/4	(100.0) (133.4)	2-13/16 3-3/4	(71.4) (95.3)	1-5/8 2-1/4	(15.9) (57.2)	
1	(25.4)	9 12	(228.6) (304.8)	6-3/4 9	(171.5) (228.6)	5-1/4 7	(133.4) (177.8)	3-3/4 5	(95.3) (127.0)	2-1/4 3	(57.2) (76.2)	
1-1/4	(31.8)	11-1/4 15	(285.8) (381.0)	8-7/16 11-1/4	(214.3) (285.8)	6-9/16 8-3/4	(166.7) (222.2)	4-3/4 6-1/4	(120.7) 158.8)	2-7/8 3-3/4	(73.0) (95.3)	

Grout-filled Concrete Block: Allowable Tension and Shear Loads based Hybrid Adhesive on Steel Design Information for U.S. Customary Unit Threaded Rod 1, 2, 3

Anchor		Tension (lb)		Shear (lb)			
Diameter (in.)	ASTM A307 F _u = 60 ksi	ASTM A193 Grade B7 F _u = 125 ksi	ASTM F593 SS 304 F _u = 100 ksi	ASTM A307 F _u = 60 ksi	ASTM A193 Grade B7 F _u = 125 ksi	ASTM F593 SS 304 F _u = 100 ksi	
3/8	2,185	4,555	3,645	1,125	2,345	1,875	
1/2	3,885	8,100	6,480	2,000	4,170	3,335	
5/8	6,075	12,655	10,125	3,130	6,520	5,215	
3/4	8,750	18,225	12,390	4,505	9,390	6,385	

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 psi = 0.006895 MPa

- 1 Allowable load used in the design must be the lesser of bond values and tabulated steel element values.
- 2 Allowable tension and shear loads for threaded rods to resist short term loads, such as wind or seismic, must be calculated in accordance with Section 4.1 as applicable.
- 3 Allowable steel loads are based on allowable tension and shear stresses equal to 0.33X Fu and 0.17xFu, respectively.

A7+ Grout-filled Concrete Block: Allowable Tension Loads Hybrid Adhesive for Threaded Rod 1, 2, 3, 4, 7, 9, 10, 11, 12

Anchor	Minimum Embedment (inches)	Load at s _q		Spacing⁵			Edge Distance ⁶			
Diameter (in.)		and c _{cr} (lb)	Critical s _{cr} (inches)	Minimum s _{min} (inches)	Load reduction factor for s _{min} ⁸	Critical c _{cr} (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ⁸		
3/8	3-3/8	1,125	13.5	4	1.00	12	4	1.00		
1/2	4-1/2	1,695	18	4	0.60	20	4	0.90		
5/8	5-5/8	2,015	22.5	4	0.60	20	4	0.90		
3/4	6-3/4	3,145	27	4	0.60	20	4	0.63		

A7+ Grout-filled Concrete Block: Allowable Shear Loads Hybrid Adhesive for Threaded Rod 1, 2, 3, 4, 7, 9, 10, 11, 12

Anchor	Minimum	Load at s _q		Spacing⁵		Edge Distance ⁶			
Diameter (in.) Embedment (inches)		and c _{cr} (lb)	Critical s _{cr} (inches)	Minimum s _{min} (inches)	Load reduction factor for s _{min} ⁸	Critical c _{cr} (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ⁸	
3/8	3-3/8	750	13.5	4	0.50	12	4	0.95	
1/2	4-1/2	1,520	18	4	0.50	20	4	.044	
5/8	5-5/8	2,285	22.5	4	0.50	22	4	0.26	
3/4	6-3/4	2,345	27	4	0.50	20	4	0.26	

For SI: 1 inch = 25.4mm, 1 lbf = 0.0044 kN, 1 ksi = 6.894 MPa. (Refer to Table 4 for footnotes)

- 1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry strength of 1500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C 90. Allowable loads have been calculated using a safety factor of 5.0.
- 3 Anchors may be installed in any location in the face of the masonry wall (cell, web, bed joint) as shown in Figure 2.
- 4 A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See Figure 2 of this report.
- 5 The critical spacing distance, scr, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, smin, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors
- 6 The critical edge or end distance, ccr, is the distance where full load values in the table may be used. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.
- 7 The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge distances are maintained.
- 8 Load values for anchors installed less than scr and ccr must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be considered.
- 9 Linear interpolation of load values between minimum spacing (smin) and critical spacing (scr) and between minimum edge or end distance (cmin) and critical edge or end distance (ccr) is permitted.
- 10 Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. 3/8-inch- and 1/2-inch-diameter anchors are permitted in minimum nominally 6-inch-thick concrete masonry). The 5/8- and 3/4-inch-diameter anchors must be installed in minimum nominally 8-inch-thick concrete masonry.
- 11 Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values given in Table 2.
- 12 Tabulated allowable bond loads must be adjusted for increased in-service base material temperatures in accordance with Figure 1, as applicable.

Grout-filled Concrete Block: Allowable Tension and Shear Hybrid Adhesive Loads for Rebar 1, 2, 3

Rebar Size	Tension (lb)	Shear (lb)
	ASTM A615, Grade 60	ASTM A615, Grade 60
No. 3	3,270	1,685
No. 4	5,940	3,060
No. 5	9,205	4.745
No. 6	13,070	6,730

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 psi = 0.006895 MPa

- 1 Allowable load used in the design must be the lesser of bond values and tabulated steel element values.
- 2 Allowable tension and shear loads for threaded rods to resist short term loads, such as wind or seismic, must be calculated in accordance with Section 4.1 as applicable.
- 3 Allowable steel loads are based on allowable tension and shear stresses equal to 0.33X Fu and 0.17xFu, respectively.

A7+ Grout-filled Concrete Block: Allowable Tension Loads Hybrid Adhesive **for Rebar** 1, 2, 3, 4, 7, 9, 10, 11, 12

Anchor	Minimum Embedment (inches)	Load at s _q		Spacing⁵			Edge Distance ⁶		
Diameter (in.)		and c _{cr} (lb)	Critical s _{cr} (inches)	Minimum s _{min} (inches)	Load reduction factor for s _{min} ⁸	Critical c _{cr} (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ⁸	
3/8	3-3/8	1,530	13.5	4	1.00	12	4	1.00	
1/2	4-1/2	1,845	18	4	0.60	20	4	0.90	
5/8	5-5/8	2,465	22.5	4	0.60	20	4	0.90	
3/4	6-3/4	2,380	27	4	0.60	20	4	0.63	

A7+ Grout-filled Concrete Block: Allowable Shear Loads Hybrid Adhesive for Rebar 1, 2, 3, 4, 7, 9, 10, 11, 12

Anchor	Minimum Embedment (inches)	Load at s _c		Spacing ⁵			Edge Distance ⁶		
Diameter (in.)		and c _c (lb)	Critical s _{cr} (inches)	Minimum s _{min} (inches)	Load reduction factor for s _{min} ⁸	Critical c _{cr} (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ⁸	
3/8	3-3/8	1,410	13.5	4	0.50	12	4	0.95	
1/2	4-1/2	1,680	18	4	0.50	20	4	0.44	
5/8	5-5/8	3,245	22.5	4	0.50	12	4	0.26	
3/4	6-3/4	4,000	27	4	0.50	20	4	0.26	

For SI: 1 inch = 25.4 mm: 1 lbf = 0.0044 kN. 1 ksi = 6.894 MPa.

(The following footnotes apply to both Tables 6 and 7)

- 1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry strength of 1500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C 90. Allowable loads have been calculated using a safety factor of 5.0.
- 3 Anchors may be installed in any location in the face of the masonry wall (cell, web, bed joint) as shown in figure 2.
- 4 A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of
- 5 The critical spacing distance, scr, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, smin, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.
- 6 The critical edge or end distance, ccr, is the distance where full load values in the table may be used. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.
- 7 The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge distances are maintained.
- 8 Load values for anchors installed less than scr and ccr must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be
- 9 Linear interpolation of load values between minimum spacing (smin) and critical spacing (scr) and between minimum edge or end distance (cmin) and critical edge or end distance (ccr) is permitted.
- 10 Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. No. 3 and No. 4 reinforcing bars are permitted in minimum nominally 6-inch-thick concrete masonry). No. 5 and No. 6 reinforcing bars must be installed in minimum nominally 8-inch-thick concrete masonry.
- 11 Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values given in Table 4.
- 12 Tabulated allowable bond loads must be adjusted for increased in-service base material temperatures in accordance with Figure 1, as applicable.

New Formulation C6+

For the Most Demanding Jobs

DESCRIPTION

Suggested Specifications see page RH 24

Maximum strength epoxy for your most heavy-duty and specialty applications

Red Head C6+ is the highest strength adhesive in all of ITW's adhesive anchor products. Designed for use in the most demanding anchoring applications, the maximum strength of Red Head C6+ is backed by ICC-ES (AC308, AC58) approvals for both concrete and masonry. It is also the only adhesive approved for core-drilled holes in cracked concrete without the use of a roughening tool.

ADVANTAGES

- At least 25% stronger than the old C6+ formulation for threaded rod in cracked concrete with seismic conditions
- Fastest cure time in its class, curing in just 2.75 hours at 32°C and in only 2 hours at 43°C!
- ICC-ES approved for cracked concrete and seismic applications (ICC-ES ESR 4046)
- ICC-ES approved for masonry applications (ICC-ES ESR 4109)
- ICC-ES Approved for use in core-drill holes, even in cracked concrete
- At least 10 minutes of nozzle life at 43°C
- Can be used down to 4°C and up to 43°C
- Can be used in oversized holes

- Rugged cartridges resist breakage due to rough handling or cold temperatures
- The industry's first adhesive to be approved for use in core-drilled holes in cracked concrete without the need for a roughening tool
- Install Red Head C6+ and apply the load in the same work shift! (in 21°C and above)
- ICC-ES approved for all wet conditions, including underwater
- More safe and durable on job sites than sausage packs
- Can use in both concrete and masonry substrates, including hollow and solid base materials
- 24-month shelf life
- Store between 13°C and 35°C in a cool, dry place.

Curing Times

BASE MATERIAL (F°/C°)	GEL/WORKING TIME ²	FULL CURE TIME
110°/ 43°	10 minutes	2 hours
90°/32°	14 minutes	2.75 hours
70°/ 21°	16 minutes	6.5 hours
50°/ 10°	30 minutes	24 hours
40°/ 4°	46 minutes	48 hours

¹ For concrete temperatures between 4°C - 10°C adhesive must be maintained at a minimum of 13°C during installation.

Spacing and Edge Distance

NOMINAL ANCHOR DIAMETER (IN.)	MINIMUM SPACING (IN.)	MINIMUM EDGE DISTANCE (IN.)
3/8	1-1/2	1-1/2
1/2	1-1/2	1-1/2
5/8	1-3/4	1-3/4
3/4	1-7/8	1-7/8
7/8	2	2
1	2	2
1-1/4	2-1/2	2-1/2

Gel time is max time from the end of mixing to when the insertion of the threaded rod or rebar into the adhesive shall be completed

APPLICATIONS

Gene Leahy Mall Renovation Anchors were installed with no concerns with the environment using ITW Epcon C6+.

Boston, San Diego, Evanston Contractors enjoy the easy pump, easy storage and superior performance for

rebar dowling and brick tie application.

Anchoring a concrete traffic barrier wall to concrete bridge deck.

Doweling rebar into bridge deck and forming to pour new barrier wall using ITW Epcon C6+.

Doweling rebar into concrete foundation wall prior to building concrete block wall using ITW Epcon C6+.

FEATURES

ANCHORAGE TO SOLID CONCRETE

Threaded Rod (Carbon or Stainless Steel) or Rebar supplied by contractor; rod does not need to be chisel pointed

C6+ adhesive completely fills area between rod and hole creating a stress-free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

APPROVALS/LISTINGS

ICC-ES ESR 4046 (Concrete Report)

ICC-ES ESR 4109 (Masonry Report)

2015, 2012, 2009, 2006 International Building Code (IBC) Compliant

Florida Building Code (FBC)

City of Los Angeles (COLA)

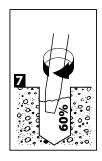
Department of Transportation (DOT) Listings

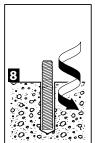
Certified to ANSI/NSF 61

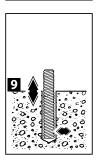
NSF/ANSI 61 Approval for use in Drinking Water System Components

ASTM C881, Types I, II, IV, and V, Grade 3, Classes B & C

INSTALLATION STEPS







C6P -30.4 fl. oz. Ordering Information

			I
PART NUMBER		DESCRIPTION	BOX QTY
CONTROL OF THE PARTY OF THE PAR	C6P-30	30.4 Fluid Ounce Red Head C6+ Cartridge with S55 nozzle	4
	D102	Heavy-Duty 34:1 thrust ratio hand dispenser for C6P-30 cartridges	1
	\$55	Standard Mixing Nozzle, fits holes for 3/8" diameter anchors and larger. 3-1/2" inch usable length for 3/8" and 1/2" anchors, 8-1/4" usable length for 5/8" anchors and above	24
- Anna Carlotte	E55*	Long Mixing Nozzle, fits holes for 3/8" diameter anchors and larger. 5-3/4" inch usable length for 3/8" and ½" anchors, 12-5/8" usable length for 5/8" anchors and above	24

PART NUMBER	DESCRIPTION	BOX QTY
F D202	Pneumatic Dispenser for C6P-30 cartridges	1
A300	Cordless Battery Dispenser for A7P-28 and C6P-30 Cartridge. Includes one battery and charger. Works with all Milwaukee® M18™ batteries	1
\$75	High Flow Mixing Nozzle, fits holes for 3/4" diameter anchors and larger. 7-3/8" usable length	24
S75EXT	Extension for High Flow Mixing Nozzle for 3/4" diameter anchors and larger. 15-5/8" usable length when attached to S75	24

^{*} E55 is only recommended with pneumatic or battery dispensers. For manual dispensing and deep embedment holes, use S55 with extension tubing on page RH34 Refer to page RH 34 for ordering information on wire brushes, brush extensions, and blow pump for deep holes.

ESTIMATING TABLES

C6+ Number of Anchoring Installations per Cartridge* 30.4 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

REBAR	DRILL						E	MBEDMENT	DEPTH IN I	NCHES (mm)					
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
#3	7/16	608.4	304.2	202.8	152.1	121.7	101.4	86.9	76.0	67.6	60.8	55.3	50.7	46.8	43.5	40.6
10M	9/16	368.0	184.0	122.7	92.0	73.6	61.3	52.6	46.0	40.9	36.8	33.5	30.7	28.3	26.3	24.5
#4	5/8	298.1	149.0	99.4	74.5	59.6	49.7	42.6	37.3	33.1	29.8	27.1	24.8	22.9	21.3	19.9
#5 or 15M	3/4	207.0	103.5	69.0	51.8	41.4	34.5	29.6	25.9	23.0	20.7	18.8	17.3	15.9	14.8	13.8
#6 or 20M	7/8	152.1	76.0	50.7	38.0	30.4	25.3	21.7	19.0	16.9	15.2	13.8	12.7	11.7	10.9	10.1
#7	1	116.4	58.2	38.8	29.1	23.3	19.4	16.6	14.6	12.9	11.6	10.6	9.7	9.0	8.3	7.8
#8 or 25M	1 1/8	92.0	46.0	30.7	23.0	18.4	15.3	13.1	11.5	10.2	9.2	8.4	7.7	7.1	6.6	6.1
#9	1 1/4	74.5	37.3	24.8	18.6	14.9	12.4	10.6	9.3	8.3	7.5	6.8	6.2	5.7	5.3	5.0
#10 or 30M	1 3/8	61.6	30.8	20.5	15.4	12.3	10.3	8.8	7.7	6.8	6.2	5.6	5.1	4.7	4.4	4.1
#11	1 3/4	38.0	19.0	12.7	9.5	7.6	6.3	5.4	4.8	4.2	3.8	3.5	3.2	2.9	2.7	2.5

^{*}The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

Number of Anchoring Installations per Cartridge* 30.4 Fluid Ounce Cartridge Using Threaded Rod with C6+ Adhesive in Solid Concrete

THREADED	DRILL						E	MBEDMENT	DEPTH IN I	NCHES (mm	1)					
ROD	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	5/16	1192.4	596.2	397.5	298.1	238.5	198.7	170.3	149.0	132.5	119.2	108.4	99.4	91.7	85.2	79.5
3/8	7/16	608.4	304.2	202.8	152.1	121.7	101.4	86.9	76.0	67.6	60.8	55.3	50.7	46.8	43.5	40.6
1/2	9/16	368.0	184.0	122.7	92.0	73.6	61.3	52.6	46.0	40.9	36.8	33.5	30.7	28.3	26.3	24.5
5/8	11/16	246.4	123.2	82.1	61.6	49.3	41.1	35.2	30.8	27.4	24.6	22.4	20.5	19.0	17.6	16.4
	3/4	207.0	103.5	69.0	51.8	41.4	34.5	29.6	25.9	23.0	20.7	18.8	17.3	15.9	14.8	13.8
3/4	13/16	176.4	88.2	58.8	44.1	35.3	29.4	25.2	22.0	19.6	17.6	16.0	14.7	13.6	12.6	11.8
	7/8	152.1	76.0	50.7	38.0	30.4	25.3	21.7	19.0	16.9	15.2	13.8	12.7	11.7	10.9	10.1
7/8	15/16	132.5	66.2	44.2	33.1	26.5	22.1	18.9	16.6	14.7	13.2	12.0	11.0	10.2	9.5	8.8
	1	116.4	58.2	38.8	29.1	23.3	19.4	16.6	14.6	12.9	11.6	10.6	9.7	9.0	8.3	7.8
1	1-1/16	103.1	51.6	34.4	25.8	20.6	17.2	14.7	12.9	11.5	10.3	9.4	8.6	7.9	7.4	6.9
	1-1/8	92.0	46.0	30.7	23.0	18.4	15.3	13.1	11.5	10.2	9.2	8.4	7.7	7.1	6.6	6.1
1-1/4	1-1/3	67.6	33.8	22.5	16.9	13.5	11.3	9.7	8.4	7.5	6.8	6.1	5.6	5.2	4.8	4.5
	1-3/8	61.6	30.8	20.5	15.4	12.3	10.3	8.8	7.7	6.8	6.2	5.6	5.1	4.7	4.4	4.1

^{*} The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

PACKAGING

- Disposable, self-contained cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material and places the epoxy at the base of the pre-drilled hole
- Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE:

High Strength EPOXY ADHESIVE: USA Made, ARRA Certified

- 1. Two component resin and hardener, 100% solids (containing no solvents or VOC's), non-sag paste, insensitive to moisture, grey in color, early working time and gel time appropriate for sever installation conditions, suitable for extreme temperature ranges, for all conditions or substrate materials.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, submerged holes.
- 4. Conforms to ASTM C881-02; Type I & IV; Grade 3; Class A, B, and C; with exceptions.
- 5. Compressive strength, ASTM D695-02: 12,090 psi minimum.
- 6. Heat deflection temperature: 60°C minimum.
- 7. Extended Shelf life: Best if used within 2 years.
- 8. Reliable performance in solid or hollow base materials.
- 9. Oversized and/or diamond cored holes permitted.

Selection Guide

^{*} E55 is only recommended with pneumatic or battery dispensers. For manual dispensing and deep embedment holes, use S55 with extension tubing on page RH34

PERFORMANCE TABLES

C6+ Epoxy Adhesive Factored Steel Strength for Threaded Rod, kN (lbf)

Non	ninal	To	ension kN (lb), Nsa	ar		Shear kN (lb) Vsar		Seismic	Shear kN (lb), Vsa	r,seismic
	or Dia. mm)	Carbon Steel A36	Carbon Steel A193 B7	Stainless F593	Carbon Steel A36	Carbon Steel A193 B7	Stainless F593	Carbon Steel A36	Carbon Steel A193 B7	Stainless F593
3/8	(9.5)	13.6 (3,060)	29.3 (6,589)	19.5 (4,382)	7.7 (1,721)	16.5 (3,704)	9.0 (2,033)	5.4 (1,205)	11.5 (2,593)	6.3 (1,423)
1/2	(12.7)	24.9 (5,596)	53.7 (12,063)	35.7 (8,021)	14.0 (3,149)	30.2 (6,783)	16.6 (3,724)	9.8 (2,204)	21.1 (4,748)	11.6 (2,607)
5/8	(15.9)	39.7 (8,915)	85.5 (19,210)	56.8 (12,775)	22.3 (5,017)	48.1 (10,806)	26.4 (5,931)	15.6 (3,512)	33.6 (7,564)	18.5 (4,152)
3/4	(19.1)	58.7 (13,192)	126.5 (28,431)	67.2 (15,104)	33.0 (7,421)	71.1 (15,995)	31.2 (7,011)	23.1 (5,194)	49.8 (11,196)	21.8 (4,908)
7/8	(22.2)	81.0 (18,210)	174.6 (39,243)	92.9 (20,891)	45.6 (10,245)	98.2 (22,077)	43.1 (9,699)	31.9 (7,171)	58.7 (15,454)	30.2 (6,789)
1	(25.4)	106.3 (23,889)	229.0 (51,483)	121.9 (27,403)	59.8 (13,439)	128.8 (28,962)	56.6 (12,724)	41.8 (9,407)	90.2 (20,273)	39.6 (8,907)
1-1/4	(31.8)	170.0 (38,223)	366.4 (82,376)	194.9 (43,819)	95.6 (21,503)	206.1 (46,334)	90.5 (20,343)	67.0 (15,052)	144.3 (32,433)	63.3 (14,240)

- 1 Values correspond to a ductile steel element
- 3 Tension values calculated according to Cl. D6.1.2 in CSA A23.3-14 Annex D
- 5 Seismic shear was calculated according to Vsar*aV,seis

- 2 Values correspond to a brittle steel element
- 4 Shear values calculated according to Cl. D7.1.2 in CSA A23.3-14 Annex D

C6+ Epoxy Adhesive Concrete Breakout and Bond Strength for Threaded Rod

GO I Epony Hame									
Characteristic	Symbol	Units			Nominal	Rod Diameter	In. (mm)		
Nominal Anchor Diameter	do	In. (mm)	3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)	7/8 (22.2)	1 (25.4)	1-1/4 (31.8)
			Concrete	Breakout					
Effectiveness factor for uncracked concrete	k _{uncr}	_				10			
Effectiveness factor for cracked concrete	k _{cr}	-				7			
Modification factor for resistance in tension to account for uncracked concrete	Ψ _{c, N}	-				1			
Minimum concrete thickness	h _{min}	mm	h _{ef} -	+ 32			$h_{ef} + 2do$		
Anchor embedment depth – minimum	h _{ef,min}	In. (mm)	1.5 (38)	2.0 (51)	2.5 (64)	3.0 (76)	3.5 (89)	4.0 (102)	5.0 (127.0)
Minimum spacing	S _{min}	In. (mm)	0.9 (24)	1.5 (38)	2.5 (64)	3.0 (76)	3.5 (89)	4.0 (102)	5.0 (127.0)
Minimum edge distance	C _{min}	In. (mm)	0.9 (24)	1.5 (38)	2.5 (64)	3.0 (76)	3.5 (89)	4.0 (102)	5.0 (127.0)
Critical edge distance	C _{ac}	ln.			See Section 4	.1.10 of the eval	uation report		
Material resistance factor for concrete	Фс	-				0.65			
Strength reduction factor for tension,	R	Cond. A				1.15			
concrete failure modes	R	Cond. B				1			
Strength reduction factor for shear,	R	Cond. A				1.15			
concrete failure modes	R	Cond. B				1			
Modification Factor for concrete density	λ	_				1			
1			Bond S	trength					

				Bond Stren	gth					
	Nominal Rod Diameter In. (mm)	d _o	ln.	3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)	7/8 (22.2)	1 (25.4)	1-1/4 (31.8)
Temperature Range A ²	Characteristic Bond Strength for Uncracked Concrete	T _{k,uncr}	MPa (psi)	17.0 (2,470)	16.5 (2,390)	16.0 (2,315)	15.4 (2,240)	14.9 (2,160)	14.4 (2,085)	13.3 (1,930)
	Characteristic Bond Strength for Cracked Concrete	T _{k,cr}	MPa (psi)	7.8 (1,125)	7.8 (1,125)	7.8 (1,125)	8.7 (1,255)	8.7 (1,255)	8.7 (1,255)	9.4 (1,370)
Temperature Range B ^{3,4}	Characteristic Bond Strength for Uncracked Concrete	$T_{k,uncr}$	MPa (psi)	14.5 (2,110)	14.1 (2,040)	13.6 (1,975)	13.2 (1,910)	12.7 (1,845)	12.3 (1,780)	11.3 (1,645)
Tempe	Characteristic Bond Strength for Cracked Concrete	T _{k,cr}	MPa (psi)	6.6 (960)	6.6 (960)	6.6 (960)	7.4 (1,070)	7.4 (1,070)	7.4 (1,070)	8.1 (1,170)
Sn us	Strength Reduction Factor — Dry Concrete	Φ _{dry, ci}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Continuous	Strength Reduction Factor — Water-Saturated Concrete	Φ _{sat, ci}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Cont	Strength Reduction Factor — Water-Filled Holes	Φ _{wf, ci}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor — Submerged Concrete	Φ _{sub, ci}	-	0.65	0.65	0.55	0.55	0.55	0.55	0.55
=	Strength Reduction Factor — Dry Concrete	Φ _{dry, pi}	-	0.65	0.65	0.65	0.55	0.55	0.55	0.55
Periodic nspection	Strength Reduction Factor — Water-Saturated Concrete		-	0.65	0.65	0.65	0.55	0.55	0.55	0.65
Periodic Inspection	Strength Reduction Factor — Water-Filled Holes	Φ _{wf, pi}	_	0.55	0.55	0.55	0.55	0.55	0.55	0.55
	Strength Reduction Factor — Submerged Concrete	Φ _{sub, pi}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45
Subme	rged installation reduction factor		-	1.00	1.00	1.00	1.00	1.00	0.81	1.00
Reduct	ion factor for seismic tension	a _{N,seis}	-	0.95	0.98	0.96	0.96	0.94	0.94	0.94

 $^{1\ \} Bond\ strength\ values\ correspond\ to\ concrete\ compressive\ strengths\ ranging\ from\ 17.2\ Mpa\ (2,500\ psi)\ to\ 55.2\ Mpa\ (8,000psi).$

Combined Tension and Shear Loading—for C6+ Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. For combined tension and shear loading, please see Section 4.2.2 of ICC ESR 4046

 $^{2\ \} Temperature\ range\ A:\ Maximum\ short\ term\ temperature\ of\ 61^{\circ}C\ (142^{\circ}F)\ and\ maximum\ long\ term\ temperature\ of\ 43^{\circ}C\ (110^{\circ}F).$

 $^{3\} Temperature\ range\ B:\ Maximum\ short\ term\ temperature\ of\ 74^{\circ}C\ (165^{\circ}F)\ and\ maximum\ long\ term\ temperature\ of\ 43^{\circ}C\ (110^{\circ}F).$

 $^{4\ \} For\ structures\ assigned\ to\ IBC\ or\ IRC\ Seismic\ Design\ Category\ C,\ D,\ E,\ or\ F,\ bond\ strength\ values\ must\ be\ multiplied\ by\ aN,seis.$

⁵ Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member except where pullout or pryout resistance governs

⁶ Condition B applies where supplementary reinforcement is not provided or where pullout or pryout strength governs

⁷ Bond strength values correspond to anchors installed in holes drilled with a hammer drill and carbide bit

C6+ Epoxy Adhesive Factored Steel Strength for Reinforcing Bars, kN (lbf)

	A:	STM A615 Grade 60 Rel	par			CSA G30.18 Grade 400					
US Rebar Size	Tension In. (mm)	Shear In. (mm)	Seismic Shear In. (mm)	CA Rebar Size	Tension In. (mm)	Shear In. (mm)	Seismic Shear In. (mm)				
No. 3	29.9 (6,732)	16.8 (3,787)	135.6 (3,446)	10M	37 (8.255)	21 (4,643)	14 (3,250)				
No. 4	54.4 (12,240)	30.6 (6,885)	28.0 (6.265)	15M	73 (16,510)	41 (9,287)	29 (6,501)				
No. 5	84.4 (18,972)	47.5 (10,672)	43.0 (9,711)	20M	110 (24,765)	62 (13,930)	43 (9,751)				
No. 6	119.8 (26,928)	67.4 (15,147)	61.0 (13,632)	25M	184 (41,275)	103 (23,217)	72 (16,252)				
No. 7	163.3 (36,720)	91.9 (20,655)	83.0 (18,590)	30M	257 (57,785)	145 (32,504)	101 (22,753)				
No. 8	215.1 (48,348)	121.0 (27.196)	86.0 (19,309)	1 Values correspond to a ductile steel element per standards above							
	†	1	†	Topicion values calculated according to CL DC 1.2 in CCA A32.2.14 Appear D							

109.0 (24,442)

138.0 (31,041)

- 2 Tension values calculated according to Cl. D6.1.2 in CSA A23.3-14 Annex D 3 Shear values calculated according to Cl. D7.1.2 in CSA A23.3-14 Annex D $\,$
- 4 Seismic shear was calculated according to Vsar*aV, seis

C6+ Epoxy Adhesive

272.2 (61,200)

345.7 (77.724)

No. 9

No. 10

153.1 (34,425)

194.5 (43,720)

Concrete Breakout and Bond Strength for Reinforcing Bars, kN (lbf)

	Symbol	Units	nits Nominal Rod Diameter							
Nominal Anchor Size	do		No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
				Concrete Brea	kout					
Effectiveness factor for uncracked concrete	\mathbf{k}_{uncr}	_				1	0			
Effectiveness factor for cracked concrete	k _{cr}	_				7	7			
Minimum concrete thickness	h _{min}	mm	h _{ef} ⊣	- 32			h _{ef} +	2do		
Modification factor for resistance in tension to account for uncracked concrete	h _{ef,min}	In. (mm)	2.4 (60.3)	2.8 (69.9)	3.1 (79.4)	3.5 (88.9)	3.5 (88.9)	4.0 (101.6	4.5 (114.3)	5.0 (127.0)
Minimum spacing	S _{min}	In. (mm)	0.9 (23.8)	1.5 (38.1)	25 (63.5)	3.0 (76.2)	3.5 (88.9)	4.0 (101.6	4.5 (114.3)	5.0 (127.0)
Minimum edge distance	C _{min}	In. (mm)	0.9 (23.8)	1.5 (38.1)	25 (63.5)	3.0 (76.2)	3.5 (88.9)	4.0 (101.6	4.5 (114.3)	5.0 (127.0)
Critical edge distance	C ac	In. (mm)			See Se	ection 4.1.10 of	the evaluation	report		
Material resistance factor for concrete	Фс	-				0.	65			
Strength reduction factor for tension,	R	Cond. A				1.	15			
concrete failure modes	R	Cond. B					1			
Strength reduction factor for shear, concrete	R	Cond. A				1.	15			
failure modes	R	Cond. B					1		-	
Modification Factor for concrete density	λ	_					1			

	-		В	ond Streng	th						
	Nominal Anchor Size			No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
rature e A²	Characteristic Bond Strength for Uncracked Concrete	$T_{k,uncr}$	MPa (psi)	16.3 (2,365)	15.7 (2,275)	15.0 (2,180)	14.4 (2.085)	13.7 (1.990)	13.1 (1.895)	12.4 (1.805)	11.8 (1,710)
Temperature Range A²	Characteristic Bond Strength for Cracked Concrete	$T_{k,cr}$	MPa (psi)	7.8 (1,125)	7.8 (1,125)	7.7 (1,110)	8.2 (1,190)	7.9 (1,140)	7.5 (1,090)	7.2 (1,040)	7.4 (1,080)
emperature Range B ^{3,4}	Characteristic Bond Strength for Uncracked Concrete	T _{k,uncr}	MPa (psi)	13.9 (2,020)	13.4 (1,940)	12.8 (1,860)	12.3 (1,780)	11.7 (1,700)	11.2 (1,620)	10.6 (1,540)	10.1 (1,460)
Temperature Range B ^{3,4}	Characteristic Bond Strength for Cracked Concrete	$T_{k,cr}$	MPa (psi)	6.6 (960)	6.6 (960)	15.7 15.0 14.4 13.7 13.1 12.4 1 (2,275) (2,180) (2,085) (1,990) (1,895) (1,805) (1 7.8 7.7 8.2 7.9 7.5 7.2 (1,125) (1,110) (1,190) (1,140) (1,090) (1,040) (1 13.4 12.8 12.3 11.7 11.2 10.6 1 (1,940) (1,860) (1,780) (1,700) (1,620) (1,540) (1 6.6 6.5 7.0 6.7 6.4 6.1 6.1 (960) (945) (1,015) (975) (930) (890) (9 0.65 <td>6.4 (930)</td>	6.4 (930)				
Sn u	Strength Reduction Factor — Dry Concrete	Φ _{dry, ci}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Continuous Inspection	Strength Reduction Factor — Water-Saturated Concrete	Φ _{sat, ci}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
ins de	Strength Reduction Factor — Water-Filled Holes	Φ _{wf, ci}	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
)	Strength Reduction Factor — Submerged Concrete	Φ _{sub, ci}	_	0.65	0.65	0.65	0.55	0.55	0.55	0.55	0.55
u	Strength Reduction Factor — Dry Concrete	Φ _{dry, pi}	_	0.65	0.65	0.65	0.55	0.55	0.55	0.55	0.55
Periodic Inspection	Strength Reduction Factor — Water-Saturated Concrete	Φ _{sat, pi}	-	0.65	0.65	0.65	0.55	0.55	0.55	0.55	0.65
Per Insp	Strength Reduction Factor — Water-Filled Holes	Φ _{wf, pi}	_	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
	Strength Reduction Factor — Submerged Concrete	Φ _{sub, pi}	_	0.55	0.65	0.55	0.45	0.45	0.45	0.45	0.45
Submerg								1.00			
Reduction	n factor for seismic tension	a _{N.seis}	_	0.88	0.88	0.88	0.84	0.84	0.84	0.84	0.95

- 1 Bond strength values correspond to concrete compressive strengths ranging from 17.2 Mpa (2,500 psi) to 55.2 Mpa (8,000psi).
- 2 Temperature range A: Maximum short term temperature of 61°C (142°F) and maximum long term temperature of 43°C (110°F).
- 3 Temperature range B: Maximum short term temperature of 74°C (165°F) and maximum long term temperature of 43°C (110°F).
- 4 For structures assigned to IBC or IRC Seismic Design Category C, D, E, or F, bond strength values must be multiplied by aN,seis.
- 5 Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member except where pullout or pryout resistance governs
- 6 Condition B applies where supplementary reinforcement is not provided or where pullout or pryout strength governs 7 Bond strength values correspond to anchors installed in holes drilled with a hammer drill and carbide bit

C6+ Epoxy Adhesive Factored Concrete Breakout/Bond Failure Strength for Threaded Rod Installed in Holes Drilled with a Hammer Drill and a Carbide Bit

				IIISt	uneu n	потез	Dille	<i>i with</i> a	Панн	iei Dilli	una a	Curbia	e Dit	
	al anchor meter	Effective Embedment						Tension	, kn (lbf)					
	(mm)	In. (mm)			UNCR	RACKED					CRA	CKED		
		, ,		20 Mpa)0 psi)		30 Mpa 50 psi)		40 Mpa)0 psi)		20 Mpa 0 psi)		0 Mpa 0 psi)		10 Mpa 0 psi)
3/8	(9.5)	2-3/8 (60)	13.6	(3,060)	16.7	(3,750)	19.3	(4,330)	9.1	(2,045)	9.1	(2,045)	9.1	(2,045)
		3-3/8 (86)	23.1	(5,185)	28.3	(6,355)	28.4	(6,385)	12.9	(2,910)	12.9	(2,910)	12.9	(2,910)
		4-1/2 (114)	35.5	(7,985)	37.9	(8,510)	37.9	(8,510)	17.2	(3,875)	17.2	(3,875)	17.2	(3,875)
		7-1/2 (191)	63.1	(14,185)	63.1	(14,185)	63.1	(14,185)	28.7	(6,460)	28.7	(6,460)	28.7	(6,460)
1/2	(12.7)	2-3/4 (70)	17.0	(3,815)	20.8	(4,670)	24.0	(5,395)	11.9	(2,670)	14.1	(3,160)	14.1	(3,170)
		4-1/2 (114)	35.5	(7,985)	43.5	(9,780)	48.8	(10,980)	23.0	(5,170)	23.0	(5,170)	23.0	(5,170)
		6 (152)	54.7	(12,295)	65.1	(14,640)	65.1	(14,640)	30.7	(6,890)	30.7	(6,890)	30.7	(6,890)
		10 (254)	108.5	(24,400)	108.5	(24,400)	108.5	(24,400)	51.1	(11,485)	51.1	(11,485)	51.1	(11,485)
5/8	(15.9)	3-1/8 (79)	20.6	(4,620)	25.2	(5,660)	29.1	(6,535)	14.4	(3,235)	17.6	(3,960)	20.0	(4,485)
	, ,	5-5/8 (143)	49.6	(11,160)	60.8	(13,670)	70.2	(15,785)	34.8	(7,810)	35.9	(7,810)	35.9	(7,810)
		7-1/2 (191)	76.4	(17,185)	93.6	(21,045)	98.6	(22,160)	47.9	(10,770)	47.9	(10,770)	47.9	(10,770)
		12-1/2 (318)	164.3	(36,930)	164.3	(36,930)	164.3	(36,930)	79.8	(17,950)	79.8	(17,950)	79.8	(17,950)
3/4	(19.1)	3-1/2 (89)	24.4	(5,480)	29.8	(6,710)	34.5	(7,745)	17.1	(3,835)	20.9	(4,695)	24.1	(5,425)
	. ,	6-3/4 (171)	65.3	(14,670)	79.9	(17,970)	92.3	(20,745)	45.7	(10,270)	55.9	(12,575)	57.7	(12,975)
		9 (229)	100.5	(22,585)	123.1	(27,665)	137.3	(30,875)	70.3	(15,810)	76.9	(17,300)	76.9	(17,300)
		15 (381)	216.2	(48,600)	228.9	(51,460)	228.9	(51,460)	128.2	(28,830)	128.2	(28,830)	128.2	(28,830)
7/8	(22.2)	3-1/2 (89)	24.4	(5,480)	29.8	(6,710)	34.5	(7,745)	17.1	(3,835)	20.9	(4,335)	24.1	(5,425)
		7-7/8 (200)	82.2	(18,485)	100.7	(22,640)	116.3	(26,145)	57.6	(12,940)	70.5	(15,850)	78.6	(17,660)
		10-1/2 (267)	126.6	(28,465)	155.1	(34,860)	179.1	(40,255)	88.6	(19,925)	104.7	(23,545)	104.7	(23,545)
		17-1/2 (445)	272.4	(61,240)	300.4	(67,540)	300.4	(67,540)	174.6	(39,240)	174.6	(39,240)	174.6	(39,240)
1	(25.4)	4 (102)	29.8	(6,690)	36.5	(8,195)	42.1	(9,465)	20.8	(4,685)	25.5	(5,740)	29.5	(6,625)
		9 (229)	100.5	(22,585)	123.1	(27,665)	142.1	(31,945)	70.3	(15,810)	86.1	(19,365)	99.5	(22,360)
		12 (305)	154.7	(34,775)	189.5	(45,590)	218.8	(49,180)	108.3	(24,340)	132.6	(29,815)	136.8	(30,755)
		20 (508)	332.8	(78,825)	378.8	(85,155)	378.8	(85,155)	228.0	(51,255)	228.0	(51,255)	228.0	(51,255)
1-1/4	(31.8)	5 (127)	41.6	(9,355)	51.0	(11,455)	58.8	(13,225)	29.1	(6,545)	35.7	(8,020)	41.2	(9,260)
		11-1/4 (286)	140.4	(31,565)	172.0	(38,660)	198.6	(44,640)	98.3	(22,095)	120.4	(27,060)	139.0	(31,250)
		15 (381)	216.2	(48,600)	264.8	(59,520)	305.7	(68,730)	151.3	(34,020)	185.3	(41,665)	214.0	(48,110)
		25 (635)	465.1	(104,570)	547.8	(123,160)	547.8	(123,160)	325.6	(73,200)	388.9	(87,425)	388.9	(87,425)

1	al anchor	Effective						Shear,	kn (lbf)					
	meter (mm)	Embedment In. (mm)			UNCR	ACKED					CRA	CKED		
	()	()		20 Mpa 0 psi)	f'c = 1 (435	30 Mpa 60 psi)		40 Mpa 10 psi)		20 Mpa 10 psi)		30 Mpa 60 psi)		·O Mpa O psi)
3/8	(9.5)	2-3/8 (60)	13.6	(3,060)	16.7	(3,750)	19.3	(4,330)	9.1	(2,045)	9.1	(2,045)	9.1	(2,045)
		3-3/8 (86)	46.1	(10,375)	56.5	(12,705)	56.8	(12,765)	25.9	(5,815)	25.9	(5,815)	25.9	(5,815)
		4-1/2 (114)	71.0	(15,970)	75.7	(17,025)	75.7	(17,025)	34.5	(7,755)	34.5	(7,755)	34.5	(7,755)
		7-1/2 (191)	126.2	(28,370)	126.2	(28,370)	126.2	(28,370)	57.5	(12,980)	57.5	(12,980)	57.5	(12,980)
1/2	(12.7)	2-3/4 (70)	33.9	(7,630)	41.6	(9,345)	48.0	10,790)	23.8	(5,340)	28.1	(6,320)	28.1	(6,320)
		4-1/2 (114)	71.0	(15,970)	87.0	(19,560)	97.7	(21,960)	46.0	(10,340)	46.0	(10,340)	46.0	(10,340)
		6 (152)	109.4	(24,590)	130.3	(29,285)	130.3	(29,285)	61.3	(13,785)	61.3	(13,785)	61.3	(13,785)
		10 (254)	217.1	(48,805)	217.1	(48,805)	217.1	(48,805)	102.2	(22,975)	102.2	(22,975)	102.2	(22,975)
5/8	(15.9)	3-1/8 (79)	41.1	(9,245)	50.4	(11,320)	58.1	(13,070)	28.8	(6,470)	35.2	(7,925)	39.9	(8,975)
		5-5/8 (143)	99.3	(22,320)	121.6	(27,335)	140.4	(31,565)	69.5	(15,625)	71.9	(16,155)	71.9	(16,155)
		7-1/2 (191)	152.9	(34,365)	187.2	(42,090)	197.1	(44,320)	95.8	(21,535)	95.8	(21,535)	95.8	(21,535)
		12-1/2 (318)	328.6	(73,865)	328.6	(73,865)	328.6	(73,865)	159.7	(35,895)	159.7	(35,895)	159.7	(35,895)
3/4	(19.1)	3-1/2 (89)	48.7	(10,955)	59.7	(13,420)	68.9	(15,495)	34.1	(7,670)	41.8	(9,390)	48.2	(10,845)
		6-3/4 (171)	130.5	(29,340)	159.8	(35,935)	184.6	(41,495)	91.4	(20,540)	111.9	(25,155)	115.4	(25,950)
		9 (229)	200.9	(45,175)	246.1	(55,325)	274.7	(61,750)	140.7	(31,620)	153.9	(34,595)	153.9	(34,595)
		15 (381)	432.4	(97,200)	457.8	(102,920)	457.8	(102,920)	256.5	(57,660)	256.5	(57,660)	256.5	(57,660)
7/8	(22.2)	3-1/2 (89)	48.7	(10,955)	59.7	(13,420)	68.9	(15,495)	34.1	(7,670)	41.8	(9,390)	48.2	(10,845)
		7-7/8 (200)	164.5	(36,975)	201.4	(45,285)	232.6	(52,290)	115.1	(25,880)	141.0	(31,700)	157.1	(35,320)
		10-1/2 (267)	253.2	(56,925)	310.1	(69,720)	358.1	(80,505)	177.3	(39,850)	209.5	(47,090)	209.5	(47,090)
		17-1/2 (445)	544.8	(122,485)	600.9	(135,080)	600.9	(134,080)	349.1	(78,485)	349.1	(78,485)	349.1	(78,485)
1	(25.4)	4 (102)	59.5	(13,385)	72.9	(16,395)	84.2	(18,930)	41.7	(9,370)	51.0	(11,475)	58.9	(13,250)
		9 (229)	200.9	(45,175)	246.1	(55,325)	285.4	(63,885)	140.7	(31,620)	172.3	(38,730)	198.9	(44,720)
		12 (305)	309.4	(69,550)	378.9	(85,180)	437.5	(98,360)	216.6	(48,685)	265.2	(59,625)	273.6	(61,505)
		20 (508)	665.7	(149,650)	757.6	(170,305)	757.6	(170,305)	456.0	(102,510)	456.0	(102,510)	456.0	(102,510)
1-1/4	(31.8)	5 (127)	83.2	(18,705)	101.9	(22,910)	117.7	(26,455)	58.2	(13,095)	71.3	(16,035)	82.4	(18,520)
		11-1/4 (286)	280.8	(63,135)	343.9	(77,320)	397.1	(89,285)	196.6	(44,195)	240.8	(54,125)	278.0	(62,500)
		15 (381)	432.4	(97,200)	529.5	(119,045)	611.4	(137,460)	302.7	(68,040)	370.7	(83,330)	428.0	(96,220)
		25 (635)	930.3	(209,140)	1095.7	(246,320)	1095.7	(246,320)	651.2	(146,395)	777.8	(174,850)	777.8	(174,850)

- 1 These load values are for the purposes of estimation only and should not be used in design
- 2 Assuming single anchor with no edge or spacing distances, nor environmental factors that would reduce the load.
- 3 Design loads include their respective Φc and Φs material resistance factors for concrete and steel from CSA A23.3-14 Cl. 8.4.2 and 8.4.3
- 4 Design loads include their respective strength reduction factor for dry, water saturated and water filled hole conditions. Refer to design information table for threaded rod for submerged conditions (Osub).
- $\,\,$ All design loads are calculated according to Condition B for concrete failure mode factor R $\,$
- 6 Bond strength values used in these calculations correspond to temperature Range A (long term temperature 43°C, short term temperature 61°C)
- 7 Values for continuous inspection with dry, water saturated or water filled concrete installed in holes drilled with a hammer drill and carbide bit

C6+ Epoxy Adhesive Factored Concrete Breakout/Bond Failure Strength for Reinforcing Bars Installed in Holes Drilled with a Hammer Drill and a Carbide Bit

US Rebar Size	Effective						Tension	, kn (lbf)					
(mm)	Embedment			UNCR	ACKED					CRA	CKED		
	In. (mm)		20 Mpa 0 psi)		30 Mpa 60 psi)		40 Mpa)0 psi)		20 Mpa 0 psi)		0 Mpa 0 psi)		10 Mpa 0 psi)
#3 (9.5)	3-1/2 (89)	24.4	(5,480)	28.2	(6,340)	28.2	(6,340)	13.4	(3,015)	13.4	(3,015)	13.4	(3,015)
	4-1/2 (114)	35.5	(7,985)	36.3	(8,150)	36.3	(8,150)	17.2	(3,875)	17.2	(3,875)	17.2	(3,875)
	7-1/2 (191)	60.4	(13,585)	60.4	(13,585)	60.4	(13,585)	28.7	(6,460)	28.7	(6,460)	28.7	(6,460)
#4 (12.7)	4-1/2 (114)	35.5	(7,985)	43.5	(9,780)	46.5	(10,455)	23.0	(5,170)	23.0	(5,170)	23.0	(5,170)
	6 (152)	54.7	(12,295)	62.0	(13,935)	62.0	(13,935)	30.7	(6,890)	30.7	(6,890)	30.7	(6,890)
	10 (254)	103.3	(23,230)	103.3	(23,230)	103.3	(23,230)	51.1	(11,485)	51.1	(11,485)	51.1	(11,485)
#5 (15.9)	5-3/4 (146)	51.3	(11,535)	62.8	(14,125)	71.2	(16,000)	36.2	(8,145)	36.2	(8,145)	36.2	(8,145)
	7-1/2 (191)	76.4	(17,185)	92.8	(20,865)	92.8	(20,865)	47.3	(10,625)	47.3	(10,625)	47.3	(10,625)
	12-1/2 (318)	154.7	(34,780)	154.7	(34,780)	154.7	(34,780)	78.8	(17,710)	78.8	(17,710)	78.8	(17,710)
#6 (19.1)	6-3/4 (171)	65.3	(14,670)	79.9	(17,970)	92.3	(20,745)	54.7	(12,300)	54.7	(12,300)	54.7	(12,300)
	9 (229)	100.5	(22,585)	123.1	(27,665)	127.8	(28,740)	73.0	(16,405)	73.0	(16,405)	73.0	(16,405)
	15 (381)	213.1	(47,900)	213.1	(47,900)	213.1	(47,900)	121.6	(27,340)	121.6	(27,340)	121.6	(27,340)
#7 (22.2)	8 (203)	84.2	(18,930)	103.1	(23,185)	119.1	(26,770)	72.5	(16,295)	72.5	(16,295)	72.5	(16,295)
, ,	10-1/2 (267)	126.6	(28,465)	155.1	(34,860)	166.1	(37,335)	95.1	(21,390)	95.1	(21,390)	95.1	(21,390)
	17-1/2 (445)	272.4	(61,240)	276.8	(62,225)	276.8	(62,225)	158.6	(35,645)	158.6	(35,645)	158.6	(35,645)
#8 (25.4)	9 (229)	100.5	(22,585)	123.1	(27,665)	142.1	(31,945)	89.1	(20,030)	89.1	(20,030)	89.1	(20,030)
	13 (330)	174.4	(39,210)	213.6	(48,025)	223.8	(50,305)	128.7	(28,935)	128.7	(28,935)	128.7	(28,935)
	20 (508)	332.8	(74,825)	344.3	(77,395)	344.3	(77,395)	198.0	(44,515)	198.0	(44,515)	198.0	(44,515)
#9 (28.6)	10-1/2 (267)	126.6	(28,465)	155.1	(34,860)	179.1	(40,255)	111.6	(14,110)	111.6	(14,110)	111.6	(14,110)
• •	13-1/2 (343)	184.6	(41,495)	226.1	(50,820)	249.0	(55,980)	143.5	(18,145)	143.5	(18,145)	143.5	(18,145)
	20 (508)	332.8	(74,825)	368.9	(82,935)	368.9	(82,935)	212.6	(47,785)	212.6	(47,785)	212.6	(47,785)
# 10 (32.2)	12 (305)	154.7	(34,775)	189.5	(42,590)	218.8	(49,180)	147.2	(33,080)	147.2	(33,080)	147.2	(33,080)
,	15 (381)	216.2	(48,600)	264.8	(59,520)	291.2	(65,475)	183.9	(41,350)	183.9	(41,350)	183.9	(41,350)
	25 (635)	465.1	(104,570)	485.4	(109,120)	485.4	(109,120)	306.6	(68,920)	306.6	(68,920)	306.6	(68,920)

C6+ Epoxy Adhesive

Factored Concrete Breakout/Bond Failure Strength for Reinforcing Bars Installed in Holes Drilled with a Hammer Drill and a Carbide Bit

US Rebar Size	Effective		anca mi mores		kn (lbf)		
(mm)	Embedment		UNCRACKED			CRACKED	
	In. (mm)	f'c = 20 Mpa (2900 psi)	f'c = 30 Mpa (4350 psi)	f'c = 40 Mpa (5800 psi)	f'c = 20 Mpa (2900 psi)	f'c = 30 Mpa (4350 psi)	f'c = 40 Mpa (5800 psi)
# 3 (9.5)	3-1/2 (89)	48.7 (10,955)	56.4 (12,675)	56.4 (12,675)	26.8 (6,030)	26.8 (6,030)	26.8 (6,030)
	4-1/2 (114)	71.0 (15,970)	72.5 (16,300)	72.5 (16,300)	34.5 (7,755)	34.5 (7,755)	34.5 (7,755)
	7-1/2 (191)	120.8 (27,165)	120.8 (27,165)	120.8 (27,165)	57.5 (12,920)	57.5 (12,920)	57.5 (12,920)
# 4 (12.7)	4-1/2 (114)	71.0 (15,970)	87.0 (19,560)	93.0 (20,905)	46.0 (10,340)	46.0 (10,340)	46.0 (10,340)
	6 (152)	109.4 (24,590)	124.0 (27,875)	124.0 (27,875)	61.3 (13,785)	61.3 (13,785)	61.3 (13,785)
	10 (254)	206.6 (46,455)	206.6 (46,455)	206.6 (46,455)	102.2 (22,975)	102.2 (22,975)	102.2 (22,975)
# 5 (15.9)	5-3/4 (146)	102.6 (23,070)	125.7 (28,255)	142.3 (31,995)	71.8 (16,150)	72.5 (16,290)	72.5 (16,290)
	7-1/2 (191)	152.9 (34,365)	185.6 (41,735)	185.6 (41,735)	94.5 (21,250)	94.5 (21,250)	94.5 (21,250)
	12-1/2 (318)	309.4 (69,555)	309.4 (69,555)	309.4 (69,555)	157.5 (35,415)	157.5 (35,415)	157.5 (35,415)
#6 (19.1)	6-3/4 (171)	130.5 (29,340)	159.8 (35,935)	184.6 (41,495)	91.4 (20,540)	109.4 (24,605)	109.4 (24,605)
	9 (229)	200.9 (45,175)	246.1 (55,325)	255.7 (57,480)	140.7 (31,620)	145.9 (32,805)	145.9 (32,805)
	15 (381)	426.1 (95,795)	426.1 (95,795)	426.1 (95,795)	243.2 (54,675)	243.2 (54,675)	243.2 (54,675)
#7 (22.2)	8 (203)	168.4 (37,860)	206.2 (46,365)	238.2 (53,540)	117.9 (26,500)	144.4 (32,455)	145.0 (32,590)
	10-1/2 (267)	253.2 (56,925)	310.1 (69,720)	332.1 (74,670)	177.3 (39,850)	190.3 (42,775)	190.3 (42,775)
	17-1/2 (445)	544.8 (122,485)	553.6 (124,450)	553.6 (124,450)	317.1 (71,295)	317.1 (71,295)	317.1 (71,295)
#8 (25.4)	9 (229)	200.9 (45,175)	246.1 (55,325)	284.2 (63,885)	140.7 (31,620)	172.3 (38,730)	178.2 (40,065)
, ,	13 (330)	348.8 (78,420)	427.2 (96,045)	447.5 (100,610)	244.2 (54,895)	257.4 (57,870)	257.4 (57,870)
	20 (508)	665.7 (149,650)	688.5 (154,785)	688.5 (154,785)	396.0 (89,035)	396.0 (89,035)	396.0 (89,035)
# 9 (28.6)	10-1/2 (267)	253.2 (56,925)	310.1 (69,720)	358.1 (80,505)	177.3 (39,850)	217.1 (48,805)	223.2 (50,175)
	13-1/2 (343)	369.2 (82,990)	452.1 (101,640)	498.0 (111,960)	258.4 (58,095)	286.9 (64,510)	286.9 (64,510)
	20 (508)	665.7 (149,650)	737.8 (165,865)	737.8 (165,865)	425.1 (95,570)	425.1 (95,570)	425.1 (95,570)
# 10 (32.2)	12 (305)	309.4 (69,550)	378.9 (85,180)	437.5 (98,360)	216.6 (48,685)	265.2 (59,625)	294.3 (66,160)
	15 (381)	432.4 (97,200)	529.5 (119,045)	582.5 (130,945)	302.7 (68,040)	367.9 (82,705)	367.9 (82,705)
	25 (635)	930.3 (209,140)	970.8 (218,245)	970.8 (218,245)	613.1 (137,840)	613.1 (137,840)	613.1 (137,840)

 $^{1.} These \ load\ values\ are\ for\ the\ purposes\ of\ estimation\ only\ and\ should\ not\ be\ used\ in\ design$

² Submerged installation reduction factor

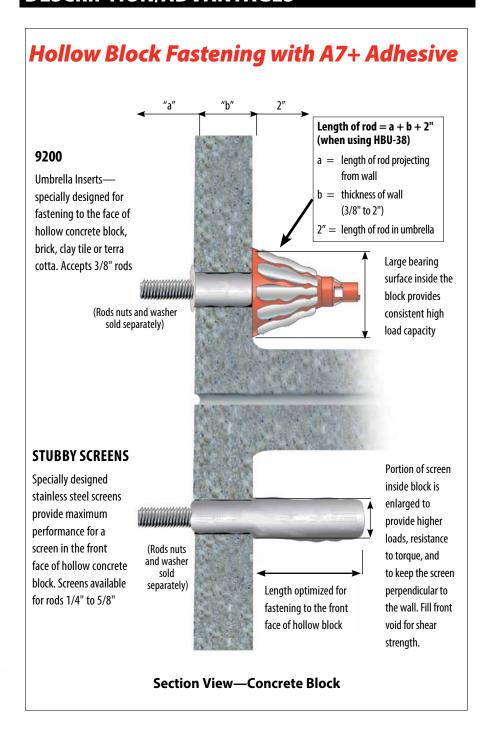
³ Design loads include their respective Oc and Os material resistance factors for concrete and steel from CSA A23.3-14 Cl. 8.4.2 and 8.4.3

⁴ Design loads include their respective strength reduction factor for dry, water saturated and water filled hole conditions. Refer to design information table for threaded rod for submerged conditions (Osub).

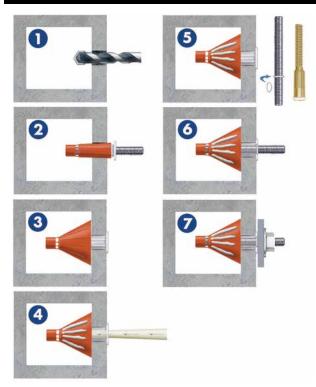
⁵ All design loads are calculated according to Condition B for concrete failure mode factor R 6 Bond strength values used in these calculations correspond to temperature Range A (long term temperature 43°C, short term temperature 61°C)

⁷ Values for continuous inspection with dry, water saturated or water filled concrete installed in holes drilled with a hammer drill and carbide bit

Umbrella Inserts and Stubby Screens


High Performance
Adhesive Systems
for Fastening to
Hollow Base
Materials

A7P-10



DESCRIPTION/ADVANTAGES

Umbrella Inserts and Screens

INSTALLATION STEPS

- 1. Drill 3/4" diameter hole, 3-3/4" deep using rotation only drilling mode and carbide tipped drill bit. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with compressed air (leave no dust or slurry).
- 2. Place umbrella on piece of threaded rod, stretch umbrella over the rod by pulling the white collar back approximately 1". Squeeze orange portion of umbrella and push umbrella into hole.
- 3. Push umbrella body through the hole and completely into void. Remove threaded rod. (Do not use in solid base materials. For anchoring into block web, ends and mortar joints, use screens.) View and verify umbrella wings expanded behind wall.
- 4. Dispense and discard a sufficient amount of adhesive from new cartridge until a uniform adhesive mix is achieved. Inject approximately 1-1/2 fl. oz. of adhesive into umbrella (7 to 8 pumps using manual dispenser) to completely fill umbrella.
- 5. 3/8" rod uses a centering ring (supplied with inserts) to keep rod perpendicular to the wall.
- 6. Insert rod into the filled umbrella using a slow, soft twisting motion until it contacts the back of umbrella.
- 7. Wait for appropriate temperature/cure time before tightening fixture to the recommended torque of 10 ft./lbs.

Installation instructions for stubby screens provided on page RH 32.

SELECTION CHART Umbrella Inserts

	DESCRIPTION	PART NO.	BOX CONTENTS		
Umbrella	a Anchor	9200	20 Umbrellas 20 Centering Rings		

SELECTION CHART

Stubby Screens

PART NO.	DESCRIPTION	QTY/BOX
HB 38-312	3/8" x 3-1/2" Stainless Screen	100
HB 12-312	1/2" x 3-1/2" Stainless Screen	50
HB 58-412	5/8" x 4-1/2" Stainless Screen	50

ESTIMATING TABLE

Umbrella

Number of Anchoring Installations Per Cartridge* Using Threaded Rod and Umbrella Inserts with A7+ Adhesives in Hollow Base Material

ROD In (mm)	DRILL HOLE DIA. INCHES	VOLUME OF CARTRIDGE	UMBRELLA INSERT WITH EMBEDMENT OF 3-3/4"
3/8 (9.5)	3/4	A7+ 10 fluid oz.	6
		A7+ 28 fluid oz.	17

^{*} These estimates do not account for waste

ESTIMATING TABLE

Stubby Number of Anchoring Installations Per Cartridge* Using Threaded Rod Screens and Stubby Screens with A7+ Adhesives in Hollow Base Material

ROD	DRILL HOLE DIA.	VOLUME OF CARTRIDGE	SCREEN LENGTH PLUS 1 DIAMETER (INCHES)				
In (mm)	INCHES		2"	3-1/2"	4-1/2"		
3/8 (9.5)	1/2	A7+ 10 fluid oz.		21			
		A7+ 28 fluid oz.		62			
1/2 (12.7)	5/8	A7+ 10 fluid oz.		15			
		A7+ 28 fluid oz.		43			
5/8 (15.9)	3/4	A7+ 10 fluid oz.			11		
		A7+ 28 fluid oz.			24		

^{*} These estimates do not account for waste.

PERFORMANCE TABLE

Load Values^{1, 2} Using A7+ in Hollow Concrete Block

	ROD D In. (m		AFTER PR	PING FORCE OPER CURE s. (Nm)	DRILL HO In. (r		(SCREEN	DMENT I LENGTH) (mm)	ULTIA TENS Lbs.	ION	ULTIN SHE Lbs. (AR
Umbrella	3/8	(9.5)	10	(13)	3/4	(19.1)	3-3/4	(95.3)	3,558	(15.8)	3,109	(13.8)
	3/8	(9.5)	7	(9)	1/2	(12.7)	3-7/8	(98.4)	1,661	(7.4)	2,071	(9.2)
Stubby Screens	1/2	(12.7)	10	(13)	5/8	(15.9)	4	(101.6)	2,458	(10.9)	4,467	(19.9)
	5/8	(15.9)	13	(17)	3/4	(19.1)	5-1/8	(130.2)	2,543	(10.9)	5,047	(22.4)

 $^{1\ \} Allowable\ working\ loads\ should\ not\ exceed\ 25\%\ ultimate\ capacity.\ Based\ upon\ testing\ using\ ASTM\ A193,\ Grade\ B7\ rod.$

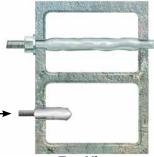
² The tabulated values are for anchors installed at a minimum 12 inch edge distance and minimum 8 inch spacing.

Screen Tubes

Quality Adhesive Systems for **Fastening Through Block and for Brick Pinning Applications**

A7P-10

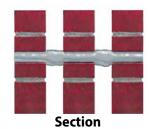
Nylon Screens


DESCRIPTION/SUGGESTED SPECIFICATIONS

Screens Used with A7+

HOLLOW CONCRETE BLOCK

Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.


For attachments to single face of block, see page RH 29 for information on "umbrella anchors" and "stubby screens"

Top View

BRICK WALL

Systems designed for Seismic Retrofit, Brick Pinning or fastening to brick various lengths and diameters available to accommodate site conditions.

The no-drip feature of A7+ adhesive makes it particularly well suited for brick pinning applications.

ADVANTAGES

HBP SERIES—NYLON SCREENS

- 30%-50% savings from stainless steel screens
- Comparable performance values
- Easier to insert and span across voids
- Flexible material is less susceptible to damage from crushing

INSTALLATION STEPS

1. Drill hole to the length of the screen plus 1 diameter, using rotation-only drilling mode. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with forced air (leave no dust or slurry).

3. Insert the filled screen completely into the hole (subflush).

When starting new cartridge or new nozzle, dispense and discard enough adhesive until uniform adhesive mix is achieved. Insert the nozzle into the bottom of the screen and fill screen completely full (use extension tube if needed to reach bottom of screen).

While holding the tab of the screen against the wall, hand insert the selected rod slowly into the screen tube with a slow twisting motion. Pull screen flush to face and coat with adhesive. Wait for appropriate cure time before torquing fixture in place.

ESTIMATING TABLE

Number of Anchoring Installations Per Cartridge* Using Threaded Rod and Screen Tubes with A7+ Adhesives in Hollow Base Material

		DRILL HOLE DIA.	. VOLUME OF CARTRIDGE		SCREEN LENGTH (INCHES)			
		INCHES			6"	8"	10"	13"
3/8	(9.5)	1/2	A7+	10 fluid oz.	12	10	7.5	
			A7+	28 fluid oz.	37	29	23	
1/2	(12.7)	5/8	A7+	10 fluid oz.	9	6	5	
			A7+	28 fluid oz.	26	18	14	
5/8	(15.9)	3/4	A7+	10 fluid oz.	6	5	4	
			A7+	28 fluid oz.	18	14	10	
3/4	(19.1)	7/8	A7+	10 fluid oz.			2.5	1.75
			A7+	28 fluid oz.			6	5

^{*} These estimates do not account for waste.

SELECTION CHART

HBP Nylon Screen

ROD DIA.	SCREEN LENGTH	NYLON SCREENS			
In. (mm)	In. (mm)	PART NO.	QTY/B0X	QTY/MASTER	
3/8 (9.5)	6 (152.4)	HBP 38-6	50	100	
3/8 (9.5)	10 (254.0)	HBP 38-10	25	50	
1/2 (12.7)	6 (152.4)	HBP 12-6	50	100	
1/2 (12.7)	10 (254.0)	HBP 12-10	25	50	
5/8 (15.9)	6 (152.4)	HBP 58-6	40		
5/8 (15.9)	10 (254.0)	HBP 58-10	40		
3/4 (19.1)	8 (203.2)	*	*	*	
3/4 (19.1)	10 (254.0)	HBP 34-10	20		

^{*} Not available in standard strength nylon screens. Longer screens available through specials.

PERFORMANCE TABLE

Load Values

Average Ultimate Loads for HBP (nylon) Screens Used with A7+ in Hollow Concrete Block¹

ROD DIA. In. (mm)	DRILL HOLE DIA. In. (mm)	MAX CLAMPING FORCE AFTER PROPER CURE FtLbs. (Nm)	SCREEN EMBEDMENT (LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/4 (6.4)	3/8 (9.5)	5 (6)	8 (203.2)	2,072 (9.2)	2,264 (10.1)
3/8 (9.5)	1/2 (12.7)	12 (16)	8 (203.2)	2,360 (10.5)	2,668 (11.9)
1/2 (12.7)	5/8 (15.9)	19 (25)	8 (203.2)	2,647 (11.8)	2,668 (11.9)
5/8 (15.9)	3/4 (19.1)	26 (35)	8 (203.2)	2,647 (11.8)	3,578 (15.9)
3/4 (19.1)	7/8 (22.2)	28 (37)	8 (203.2)	2,647 (11.8)	4,573 (20.3)

¹ Allowable working loads should not exceed 25% of ultimate capacity. Loads based upon testing with ASTM A193, Grade B7 rods.

Accessories

Wire Brush Extensions ESDS-38 EHAN-38 **EXTENSION** EXTENSION WITH SDS+ WITH T-HANDLE* ADAPTOR* * USABLE LENGTH IS 12", **GOOD FOR ALL HOLES EXCEPT 7/16" DIAMETER**

DESCRIPTION/ADVANTAGES

Piston Plugs

DESCRIPTION	PART#	QTY/BAG
Piston Plug for 5/8" and 3/4" diameter anchors	PL-5834	10
Piston Plug for 7/8" and 1" diameter anchors	PL-7810	10
Piston Plug for 1-1/4" diameter anchors	PL-1250	10

Wire Brushes

Proper hole cleaning using a brush is essential to achieve optimum performance

1/8" NPT (National Pipe Thread Taper)

ANCHOR DIA.	REBAR	DRILL BIT DIA.	BRUSH DIA.	QTY/BAG
3/8"	No. 3	7/16"	5/8"	10
1/2"	No. 4	5/8"	3/4"	10
5/8"	No. 5	3/4"	1″	10
3/4"	No. 6	7/8"	1-1/4"	10
7/8"	_	1″	1-1/2"	10
1"	No. 8	1-1/8"	1-5/8"	10
1-1/4"	_	1-3/8"	1-3/4"	10
1/2" Diameter	1			
Wire brush 12'	1			
Wire brush 12'	" usable ext	ension with T-Handl	e	1
	3/8" 1/2" 5/8" 3/4" 7/8" 1" 1-1/4" 1/2" Diameter	3/8" No. 3 1/2" No. 4 5/8" No. 5 3/4" No. 6 7/8" — 1" No. 8 1-1/4" — 1/2" Diameter Nylon Brusl	3/8" No. 3 7/16" 1/2" No. 4 5/8" 5/8" No. 5 3/4" 3/4" No. 6 7/8" 7/8" — 1" 1" No. 8 1-1/8" 1-1/4" — 1-3/8" 1/2" Diameter Nylon Brush (Soft enough for M	3/8" No. 3 7/16" 5/8" 1/2" No. 4 5/8" 3/4" 5/8" No. 5 3/4" 1" 3/4" No. 6 7/8" 1-1/4" 7/8" — 1" 1-1/2" 1" No. 8 1-1/8" 1-5/8"

^{*} Proper hole cleaning using a wire brush is essential to achieve optimum performance. Brush may be used up to 50 holes depending on concrete strength. Brushes required for installation of No. 4, No. 8 rebar and larger are available with lead time.

Plastic **Extension Tubing**

DESCRIPTION	PART#	QTY/BAG
6-Foot Straight Tubing Can cut to proper size (.39 in. I.D. x .43 in. O.D.)	E25-6	5
Heavy Duty 6' Extension Tube (Fits Piston Plugs)	E916-6	5

Blow Pump

DESCRIPTION	PART #	QTY/BAG
Blow Pump	065990	1

Since 1910, the brand trusted by the construction industry for quality, innovation and engineering support

The RED HEAD product line has long been respected by both contractors and specifiers in the construction industry. Because ITW RED HEAD proactively gets RED HEAD products specified before the job starts, contractors save time and money, plus the hassle of getting products approved. We will continue to pursue code approvals for specific anchor usages.

RED HEAD has also been on the forefront of concrete anchoring industry innovation and development.

For example, we

- developed the first anchor (the Self-Drill in 1910)
- developed the full threaded Trubolt® Wedge anchor with a stainless steel clip
- developed the lipped Multi-Set II® Drop-In anchor
- helped develop (as part of ITW) markets for the Tapcon® and E-Z Ancor™

RED HEAD is committed to providing contractors with quality products and developing new products to meet the demand of contractors worldwide.

Anchors for Concrete Applications

Selection Guide

KEY FEATURES ANCHOR TYPE SIZE RANGE (Inches)

Trubolt®

Wedge Anchors

- Seismic zone (A-B) approved
- Fully-threaded
- Length ID head stamped
- Through-fixture fastening

Diameter: 1/4 – 3/4

Length: 2-1/4-7

Large Diameter Tapcon (LDT)

Self-Threading Anchor

2x faster installation than wedge

Anti-rotation serrated washer

Extra large hex washer head

Length ID head stamped

Through-fixture fastening

Diameter: 3/8 and 5/8

Length: 1-3/4-6

Tapcon+®

Self-Threading Anchors with Climaseal Coating

(see page RH 47)

- 2x faster installation than wedge anchor
- Anti-rotation serrated washer
- Extra large hex washer head
- Length ID head stamped
- Through-fixture fastening
- Climaseal coating for high corrosion-resistance
- Approved for cracked, uncracked, and seismic applications
- 20% more holding power than wedge or sleeve anchors

Diameter: 1/4, 3/8, 1/2 **Length:** 2-1/4-6

Selection Guide

	CORROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Trubolt cont'd	■ Zinc-Plated Carbon Steel	Ultimate Pullout Performance in 4000 psi Concrete up to 26,540 lbs. (1" diameter)	Hex nut Tie-Wire version	Underwriters Laboratories Factory Mutual Listed for use in seismic zones A & B
LDT cont'd	■ Zinc-plated carbon steel to ASTM B695 & B633	Ultimate Pullout Performance in 4,000 psi Concrete up to 23,266 lbs. (3/4" diameter)	Finished bolt style	Miami-Dade County — #04-1025.08 Florida Building Code
Tapcon+® cont'd	 Blue Climaseal Coating Approved for use in ACQ and MCQ lumber 	Factored Pullout Performance in 4000 PSI Concrete up to 6,720 LBF (1/2" Daimeter)	Finished bolt style	ICC ESR-3699 — Cracked & Uncracked and Seismic approved City of Los Angeles (1/4" & 3/8" diameters) Florida Building Code Compliant 720 hours salt* spray ASTM B117

continued on next page

Anchors for Concrete Applications

continued from pages RH 36-37

ANCHOR TYPE	KEY FEATURES	SIZE RANGE (Inches)
Multi-Set II® Drop-In Anchors	RM: Flanged body to keep anchor flush with surface of concrete	Diameter: 1/4 – 3/4 Length: 1 – 3-3/16
	RL: Non-flanged body for recessed setting	Diameter: 1/4 – 3/4 Length: 1 – 3-3/16
RM RL RX (see page RH 52)	RX: Designed for hollow core and post tension concrete	Diameter: 3/8 & 1/2 Length: 3/4
Dynabolt® Masonry Sleeve Anchors For both Hollow and Solid Concrete Applications (see page RH 56)	 Concrete, block and brick Many choices of head styles Through-fixture fastening Available in 304 stainless steel 	Diameter: 1/4 – 3/4 Length: 1-3/8 – 6-1/4
Hammer-Set™ Nail-drive Anchors (see page RH 59)	Easy installationLow profile headThrough-fixture fastening	Diameter: 3/16 & 1/4 Length: 7/8 – 2

Selection Guide cont'd

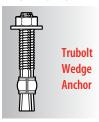
	CORROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Multi-Set II Drop-In cont'd	 Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 18-8 and 316 stainless steel 	Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4" diameter)	RM: Flanged body RL: Non-flanged body Use any bolt or threaded rod	GSA: A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII) Underwriters Laboratories Factory Mutual City of Los Angeles — #RR2748 California State Fire Marshal Caltrans
Dynabolt cont'd	■ Zinc-plated carbon steel to ASTM B633, SC1, Type III ■ Type 304 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 8,900 lbs. (3/4" diameter)	Flat head Hex nut Tie-Wire	GSA: A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual California State Fire Marshal
Hammer- Set cont'd	■ Zinc alloy	Ultimate Pullout Performance in 4000 psi Concrete up to 793 lbs.	Mushroom head	GSA: A-A-1925A Type 1 (zinc mushroom) (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-899-7890.

Trubolt Stainless Steel **Wedge Anchors**

Dependable, Inspectable, Wedge Type **Expansion Anchor**

 $\mathsf{Trubolt}^\mathtt{e}$ Wedge Anchors


PPROVALS/LISTINGS

Underwriters Laboratories Factory Mutual Listed for use in seismic zones A & B

DESCRIPTION/SUGGESTED SPECIFICATIONS

Wedge Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Trubolt Wedge Stainless Steel anchors feature an expansion clip, threaded stud body, nut and washer. Anchor bodies are made of type 304 stainless steel as identified in the drawings or other notations. The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

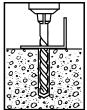
APPLICATIONS

Designed for both, indoor and outdoor applications

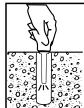
Anchoring machinery and conveyors is a common wedge anchor application. The Trubolt is fully threaded to allow a large range of embedment and fixture thickness.

Stainless steel Trubolt wedge anchors provide higher corrosion resistance allowing anchoring in tougher environments.

LENGTH INDICATOR CODE*



CODE	LENGTH O	FANCHOR	CODE	LENGTH O	F ANCHOR
Α	1-1/2 < 2	(38.1 < 50.8)	K	6-1/2 < 7	(165.1 < 177.8)
В	2 < 2-1/2	(50.8 < 63.5)	L	7 < 7-1/2	(177.8 < 190.5)
C	2-1/2 < 3	(63.5 < 76.2)	М	7-1/2 < 8	(190.5 < 203.2)
D	3 < 3-1/2	(76.2 < 88.9)	N	8 < 8-1/2	(203.2 < 215.9)
E	3-1/2 < 4	(88.9 < 101.6)	0	8-1/2 < 9	(215.9 < 228.6)
F	4 < 4-1/2	(101.6 < 114.3)	P	9 < 9-1/2	(228.6 < 241.3)
G	4-1/2 < 5	(114.3 < 127.0)	Q	9-1/2 < 10	(241.3 < 254.0)
Н	5 < 5-1/2	(127.0 < 139.7)	R	10 < 11	(254.0 < 279.4)
1	5-1/2 < 6	(139.7 < 152.4)	S	11 < 12	(279.4 < 304.8)
J	6 < 6-1/2	(152.4 < 165.1)	T	12 < 13	(304.8 < 330.2)


^{*} Located on top of anchor for easy inspection.

Visit Red Head's web site www.itwredhead.com for the most current product and technical information.

INSTALLATION STEPS

Select a carbide drill bit with a diameter egual to the anchor diameter. Drill hole at least 1/4" deeper than normal anchor embedment.

Clean hole with pressurized air or vacuum to remove any excess dust/debris.

Using the washer and nut provided, assemble the anchor, leaving nut one half turn from the end of the anchor to protect threads. Drive anchor through fixture to the specified embedment. Fasten nut and washer flush to surface of fixture.

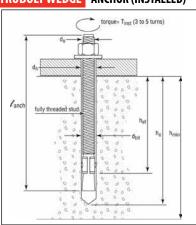
Expand anchor by tightening nut 3-5 to the specified setting torque.

SELECTION CHARTS

Trubolt Type 304 Stainless Steel

Serves many applications well. It withstands rusting in architectural and food processing environments and resists organic chemicals, dye stuffs and many inorganic chemicals.

Typical Applications— Cladding, Stadium Seating, etc. Environment—Urban (slight to moderate degree of pollution) Level of Corrosion—Medium



	PART Number	THR LENG In. (1	GTH	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	LEN	RALL GTH mm)	MAX. THI OF MAT TO BE FA In. (r	ERIAL STENED	QTY/WT PER BOX lbs.	QTY/WT PER MASTER CARTON lbs.
	WW-1422	1-1/4	(31.8)	1/4" - 20	2-1/4	(57.2)	7/8	(22.2)	100/ 3.7	1000/ 37
	WW-1432	2-1/4	(57.2)		3-1/4	(82.6)	1-7/8	(47.6)	100/ 4.8	800/ 39
	WW-3822* +	1-1/8	(28.6)	3/8" - 16	2-1/4	(57.2)	3/8	(9.5)	50/ 4.1	500/ 41
n	WW-3826* +	1-5/8	(41.3)		2-3/4	(69.9)	7/8	(22.2)	50/ 4.8	400/ 39
	WW-3830* +	1-3/4	(44.5)		3	(76.2)	1-1/8	(28.6)	50/ 5.1	400/ 42
	WW-3836* +	2-1/2	(63.5)		3-3/4	(95.3)	1-7/8	(47.6)	50/ 6.0	300/ 37
	WW-3850* +	3-3/4	(95.3)		5	(127.0)	3-1/8	(79.4)	50/ 7.5	250/ 39
	WW-1236* +	2-1/4	(57.2)	1/2" - 13	3-3/4	(95.3)	1	(25.4)	25/ 5.8	150/ 36
	WW-1242* +	2-3/4	(69.9)		4-1/4	(108.0)	1-1/2	(38.1)	25/ 6.3	150/ 39
	WW-1254* +	3	(76.2)		5-1/2	(139.7)	2-3/4	(69.9)	25/ 7.7	150/ 47
	WW-1270* +	3-1/2	(88.9)		7	(177.8)	4-1/4	(108.0)	25/ 9.4	150/ 57
	WW-5850* +	3-1/4	(82.6)	5/8" - 11	5	(127.0)	1-5/8	(41.3)	10/ 4.8	100/ 49
	WW-5860* +	4-1/4	(107.9)		6	(152.4)	2-5/8	(66.7)	10/ 5.5	50/ 28
Ī	WW-3446* +	2-7/8	(73.0)	3/4" - 10	4-3/4	(120.7)	3/4	(19.1)	10/ 6.7	60/ 41
	WW-3454* +	3-5/8	(92.1)		5-1/2	(139.7)	1-1/2	(38.1)	10/ 7.5	50/ 38
	WW-3470* +	3-1/2	(88.9)		7	(177.8)	3	(76.2)	10/ 9.2	30/ 28
Ī	TIE WIRE							_		
	TW-1400	N/	A	1/4"	2-1/8	(54.0)	9/32-hole	(7.1)	100/ 3.6	1000/ 36
	* EM Approvac		Approved	For continuous outr				.:		

^{*} FM Approved

INSTALLATION TABLE

TRUBOLT WEDGE ANCHOR (INSTALLED)

TRUBOLT WEDGE INSTALLATION INFORMATION

	Cumbal	Unite				Nomina	ai Ancno	r viame	ter (in.)			
	Symbol	Units	1/	′4 "	3/	8"	1/	2"	5/	8"	3/	4"
Anchor outer diameter	d ₀	in	0.	25	0.3	375	0	.5	0.6	525	0.7	50
Nominal carbide bit diameter	d _{bit}	in	1.	/4	3	/8	1,	/2	5,	/8	3/	/ 4
Effective embedment depth	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4
Min hole depth	h ₀	in	2	2-1/2	2-1/2	3-3/8	2-3/4	4-1/4	3-3/4	5-1/4	4-3/4	6
Min slab thickness	h _{min}	in		4	4	5	5	6	5	8	6	8
Installation torque	T _{inst}	ft-lb	4	4	2	5	5	5	9	0	11	10
Min hole diameter	dı	in	5/	116	7/	16	0/	16	11	/16	12	/16

7/16

9/16

5/16

For performance data, please visit www.itwredhead.ca

in fixture

in

Call our toll free number **800-387-9692** or visit <u>www.itwconstruction.ca</u> for general information.

 $\label{thm:commutation} \textit{Visit Red Head's web site } \underline{\textit{www.itwredhead.com}} \; \textit{for the most current product and technical information}.$

11/16

Trubolt

Wedge Anchors

13/16

⁺ UL Approved

For continuous extreme low temperature applications, use stainless steel.

Large Diameter Tapcon (LDT) Anchors

Finished Head, Removable Anchor

LDT Sawtooth"

Uses standard drill bits no special drill bits to purchase or lose!

DESCRIPTION/SUGGESTED SPECIFICATIONS

Self-threading Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The LDT anchor is a high performance anchor that cuts its own threads into concrete.

Anchor bodies are made of hardened carbon steel and zinc plated.

The anchors shall have a finished hex washer head with anti-rotation serrations to prevent anchor back-out. The head of the anchor is stamped with a length identification code for easy inspection.

The anchor shall be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

ADVANTAGES

SAVE TIME

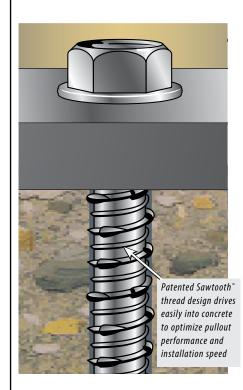
EASILY INSTALLED

- Installs in less than half the time of wedge anchors or adhesive anchors
- Simply drill a pilot hole and drive the LDT anchor by hand or impact

EASILY REMOVED

No torching or grinding required to remove anchors

SAVE MONEY


LOWER DRILL BIT COSTS

- Use standard ANSI bits instead of proprietary bits
- Single piece design, no nut and washer to assemble

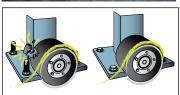
USE STANDARD ANSI BITS

- No special proprietary bits to purchase or lose
- Reduce chances for anchor failure due to incorrect bit usage

Sawtooth Threads[™]

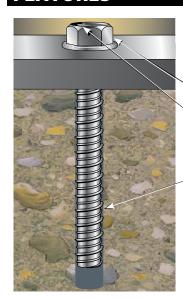
IMPROVED PERFORMANCE IN LARGE DIAMETER HOLES

- Superior performance to wedge anchor
- Higher loads in shallow embedments
- Closer edge/spacing distance than mechanical anchors
- More threads for better thread engagement and higher pullout resistance
- Durable induction-hardened tip


EASY INSTALLATION

- Easy 2-step installation, simply drill a pilot hole and drive
- Installs in less than half the time of a wedge anchor
- Efficient thread cutting
- Use standard drill bit sizes
- Single piece design—no nut and washer assembly
- Easily removed

APPLICATIONS



Racking, shelving and conveyors are just a few high volume applications ideal for Large Diameter Tapcon (LDT™). The ease and speed of installation of the LDT can reduce installation time to less than half the time of typical systems used today.

For installation speed, high performance and easy removability, LDT is the anchor of choice.

The LDT's finished head and lack of exposed threads virtually eliminates tire damage on fork lift trucks.

FEATURES

Easy Installation

Installs into concrete by hand or impact wrench

Anti-rotation Serrated Washer

--- Prevents anchor back-out

Extra Large Hex Washer Head

— With increased bearing surface

Length Identification Head Stamp

— For embedment inspection after installation

Hi-Lo Threads

 Cuts its own threads into concrete for greater pull-out resistance

INSTALLATION STEPS

Installation Steps for Concrete, Lightweight Concrete and Metal Deck

 Using the proper size carbide bit (see chart) drill "a pilot hole at least 1" deeper than anchor embedment.

Using an electric impact wrench, or socket wrench (hand install) insert anchor into hole and tighten anchor until fully seated. (see chart for socket size) (do not over tighten).

Installation Steps for Hollow or Grout-Filled CMU

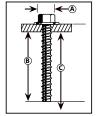
(3/8" and 1/2" diameter)

 Using a 5/16" (for 3/8" LDT) or 7/16" (for 1/2" LDT) carbide tipped bit, drill a pilot hole at least 1" deeper than anchor embedment.

 Using a socket wrench insert anchor into hole and hand tighten anchor until fully seated. (9/16" socket for 3/8" and 3/4" socket for 1/2") (do not over tighten).

LDT's can be installed by hand or with an impact wrench

Installation by hand—is easy, simply using a socket wrench

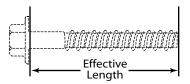


Installation by impact wrench—is recommended for faster installations or for high volume projects. Installation with impact wrench—is **not** recommended for hollow block.

INSTALLATION GUIDE

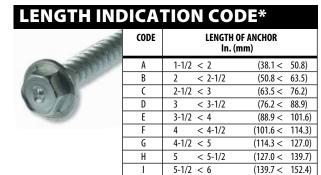
LDT Size	ANSI Standard	(A) Anchor Head	Washer Diameter	B Minimum	© Hole		USE IN	
	Drill Bit Diameter	(Socket Size) Diameter		Embedment	Depth	Concrete	Hollow	MU Grout-filled*
LDT 3/8"	5/16"	9/16"	13/16"	1-1/2"	2-1/2"	YES	YES	YES

© See catalog for effective lengths and length indication code. *please call technical service for grout-filled instructions.



LDT Carbon Steel with Zinc Plating

Meets ASTM B695 and B633 specifications for zinc plating of 5um = .0002" thickness. This material is well suited for non-corrosive interior environments.


PART NUMBER FOR CARBON STEEL	UMBER DIA. R CARBON In. (mm)		DIA.		EFFECTIVE LENGTH In. (mm) (see detail on left)		MAX. TH OF MA TO BE FA In. (1	STENED	QTY/WT PER BOX lbs.	QTY/WT PER MASTER CARTON lbs.
LDT-3816	3/8	(9.5)	5/16	(7.9)	1-3/4	(44.5)	1/4	(6.4)	50/3.0	400/ 24.0
LDT-3824	3/8	(9.5)	5/16	(7.9)	2-1/2	(63.5)	1	(25.4)	50/4.5	400/ 34.0
LDT-3840	3/8	(9.5)	5/16	(7.9)	4	(101.6)	2-1/2	(63.5)	50/6.5	400/ 52.0
LDT-5840	5/8	(15.9)	1/2	(12.7)	4	(101.6)	1-1/4	(31.8)	10/4.0	100/ 40.0
LDT-5860	5/8	(15.9)	1/2	(12.7)	6	(152.4)	3-1/4	(82.6)	10/5.4	50/ 27.0

DESIGN GUIDE

For proper selection of anchor diameters based upon predrilled holes in base plates and fixtures.

HOLE DIAMETER IN FIXTURE In. (mm)	SUGGESTED LDT DIAMETER In. (mm)
7/16 (11.1)	3/8 (9.5)
1/2 (12.7)	3/8 (9.5)
3/4 (19.1)	5/8 (15.9)

Located on top of anchor for easy inspection.

< 6-1/2

(152.4 < 165.1)

PERFORMANCE TABLE

LDT Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

AN	ICHOR	EMBEI	DMENT		f'c = 2000	PSI (13.8 MPa)			f'c = 3000 PS	l (20.7 MPa)			f′c = 4000 F	SI (27.6 MPa)	
DIA. In. (mm)		DEI In. (PTH TENSION mm) Lbs. (kN)		SHEAR Lbs. (kN)			TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
3/8	(9.5)	1-1/2	(38.1)	1,336	(5.9)	2,108	(9.4)	1,652	(7.3)	2,764	(12.3)	1,968	(8.8)	3,416	(15.2)
		2	(50.8)	1,492	(6.6)	3,036	(13.5)	2,024	(9.0)	3,228	(14.4)	2,552	(11.4)	3,420	(15.2)
		2-1/2	(63.5)	3,732	(16.6)	3,312	(14.7)	3,748	(16.7)	3,364	(15.0)	3,760	(16.7)	3,424	(15.2)
		3-1/2	(88.9)	5,396	(24.0)	3,312	(14.7)	6,624	(29.5)	3,368	(15.0)	7,852	(34.9)	3,428	(15.2)
5/8	(15.9)	2-3/4	(69.9)	5,276	(23.5)	8,656	(38.5)	6,560	(29.2)	11,064	(49.2)	7,844	(34.8)	13,476	(59.9)
		3-1/2	(88.9)	7,972	(35.5)	10,224	(45.5)	9,848	(43.8)	12,144	(54.0)	11,724	(52.2)	14,060	(62.5)

For allowable values use a 4 to 1 safety factor (Ultimate/4 or Ultimate*0.25)"

LDT Anchors Recommended Edge & Spacing Requirements for Tension Loads* Carbon Steel

	IOR DIA. (mm)	EMBEDMENT DEPTH In. (mm)		EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	REQUIRED MAX. WOR	DISTANCE TO OBTAIN KING LOAD mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
3/8	(9.5)	1-1/2	(38.1)	2	(50.8)	70%	6	(152.4)	44%
		2	(50.8)	2	(50.8)	70%	6	(152.4)	44%
		2-1/2	(63.5)	3	(76.2)	70%	6	(152.4)	44%
		3-1/2	(88.9)	4	(101.6)	70%	6	(152.4)	44%
5/8	(15.9)	2-3/4	(69.9)	6-1/4	(158.8)	65%	10	(254.0)	50%
		3-1/2	(88.9)	6-1/4	(158.8)	65%	10	(254.0)	50%

^{*} Edge and spacing distance shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

For 5/8" and 3/4" LDT Anchors, the critical edge distance for these anchors is 10 times the anchor diameter. The edge distance of these anchors may be reduced to 1-3/4" provided a 0.65 load factor is used for tension loads, a 0.15 load factor is used for shear loads applied perpendicular to the edge, or a 0.60 load factor is used for shear loads applied parallel to the edge. Linear interpolation may be used for intermediate edge distances.

LDT Anchors Recommended Edge & Spacing Requirements for Shear Loads* Carbon Steel

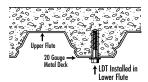
	HOR DIA. . (mm)	EMBEDMEN In. (m		EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	REQUIRED MAX. WOR	DISTANCE TO OBTAIN RKING LOAD (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
3/8	(9.5)	1-1/2	(38.1)	3	(76.2)	25%	6	(152.4)	57%
		2	(50.8)	4	(101.6)	25%	6	(152.4)	57%
		2-1/2	(63.5)	5	(127.0)	25%	6	(152.4)	57%
		3-1/2	(88.9)	5	(127.0)	25%	6	(152.4)	57%
5/8	(15.9)	2-3/4	(69.9)	6-1/4	(158.8)	15%** / 60%***	10	(254.0)	75%
		3-1/2	(88.9)	6-1/4	(158.8)	15%** / 60%***	10	(254.0)	75%

^{*} Edge and spacing distances shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Ultimate Tension Load (Lbs/kN) in Concrete Block LDT Anchors (anchors should be installed by hand in hollow block)

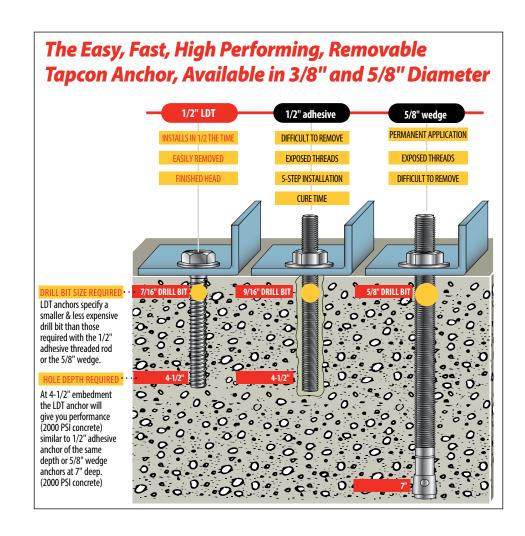
ANCHOR DIA. In. (mm)	EMBEDMENT Depth		NCRETE BLOCK		GROUT FILLED CONCRETE BLOCK				
()	In. (mm)	TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
3/8 (9.5)	1-1/2 (38.1)	916	(4.1)	3,176	(14.1)	1,592	(7.1)	3,900	(17.3)

^{**} 15% = shear load applied perpendicular to the edge


^{***} 60% = shear load appied parallel to the edge

LDT Anchors

Allowable Tension and Shear* (Lbs/kN) in Concrete Block (anchors should be installed by hand in hollow block)


ANCHOR DIA.	EMBEDMENT DEPTH		HOLLOW CO	NCRETE BLOCK			GROUT FILLED	LED CONCRETE BLOCK	
In. (mm)	In. (mm)	TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
3/8 (9.5)	1-1/2 (38.1)	229	(1.0)	794	(3.5)	398	(1.8)	975	(4.3)

^{*} Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

LDT Anchors Anchoring Overhead in 3000 PSI Lightweight Concrete On Metal Deck

ANCHOR	DRILL HOLE EMBEDMENT			3000PSI (20.7 MPa)	CONCRETE		
	DIAMETER In. (mm)	In. (mm)		TENSION LOAD 5. (kn)	ALLOWABLE WORKING LOAD Lbs. (kN)		
3/8" LDT	5/16 (7.9)	1-1/2 (38.1)	Upper Flute	2,889 (12.9)	722 (3.2)		
			Lower Flute	1,862 (8.3)	465 (2.1)		

Tapcon+ Seismic and Cracked Concrete Screw Anchors

Finished Head, Removable Anchor

DESCRIPTION/SUGGESTED SPECIFICATIONS

Self-threading Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE REQUIRING CRACKED AND SEISMIC

APPROVALS

Tapcon+ out performs traditional wedge anchor products, providing greater load capacity while reducing installation time by up to 50%, offering significant cost-in-place savings on the job site.

Tapcon+ is available with International Building Code (IBC) compliance and other third party listings for use in cracked concrete and seismic applications.

ADVANTAGES

In the Engineering Office:

- Leading steel strength in tension, shear, and seismic shear
- Outperforms wedge anchors in tension, shear, and anchor spacing
- 20% more holding power than wedge or sleeve anchors
- Approved for concrete in cracked, uncracked, and seismic conditions
- Simplicity of installation improves "buildability" on the job site
- Corrosion-resistance and long-lasting performance due to the innovative Blue Climaseal® coating

On the Job:

- More than 2x faster installation than wedge or sleeve anchors
- The ability to drive close to the edge with confidence
- Removable for temporary fixing
- Installs without hammering and precision torque wrench
- One fastening solution for multiple applications and materials

SELECTION CHART

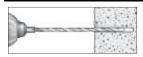
DRILL BIT DIA. mm (in.)	ANCHOR OUTSIDE THREAD DIA. mm (in.)	EFFECTIVE LENGTH mm (in.)	ANCHOR HEAD (SOCKET SIZE) DIA. In.	MAX. THICKNESS MATERIAL TO BE FASTENED mm (in.)	PART NUMBER	QTY/ BOX	PART NUMBER BULK	QTY BULK BOX
6.4 (1/4)	7.9 (5/16)	57.2 (2-1/4)	3/8	6.4 (1/4)			3511407	600
6.4 (1/4)	7.9 (5/16)	76.2 (3)	3/8	25.4 (1)			3507407	100
9.5 (3/8)	11.7 (0.46)	76.2 (3)	9/16	12.7 (1/2)	11413C	10	3508407	300
9.5 (3/8)	11.7 (0.46)	101.6 (4)	9/16	38.1 (1-1/2)	11414C	10	3509407	200
12.7 (1/2)	14.0 (0.59)	101.6 (4)	3/4	50.8 (2)	11420C	10	3510207	100
12.7 (1/2)	14.0 (0.59)	152.4 (6)	3/4	101.6 (4)	11421C	10	3510407	100

Visit Red Head's web site www.itwredhead.com for the most current product and technical information.

Tapcon+ Anchors

Racking, shelving, conveyors, railing, and drywall are just a few high volume applications ideal for Tapcon+. The ease and speed of installation of the Tapcon+ can reduce installation time to less than half the time of typical systems used today.

With cracked concrete and seismic approvals, the versatility of Tapcon+ is significantly broadened versus traditional larger diameter concrete screws.


The Tapcon+'s finished head and lack of exposed threads virtually eliminates tire damage on fork lift trucks.

> Induction hardened tip cuts into harder concrete, increases pullout.

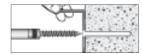
APPROVALS/LISTINGS

ICC ESR-3699 — Cracked & Uncracked and Seismic approved City of Los Angeles (1/4" & 3/8" diameters) Florida Building Code Compliant

NSTALLATION STEPS

1. Drill a hole that is at least a $\frac{1}{4}$ " deeper than the anchor embedment.

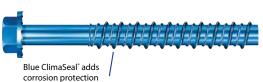
Variable Speed Concrete Hammer Drill & Carbide Drill Bit 1/4 x 7" Tapcon SDS+ Drill Bit (11493C) or 3/8 x 8" Tapcon SDS+ Drill Bit (11494C) or 1/2 x 10" Tapcon SDS+ Drill Bit (11495C) or


Equivalent size ANSI Drill Bit

2. Using pressurized air or a vacuum, remove the drilling debris from the hole.

Using

Air Compressor or Standard Vacuum Cleaner


3. Drive Tapcon+ screw anchor through fixture (bracket, or attachment plate), until fully seated.

Using

Six Point Impact Socket 3/8" Socket for 1/4" Anchors 9/16" Socket for 3/8" Anchors 3/4" Socket for 1/2" Anchors

Impact Wrench 115 Max ft-lbf for 1/4" Anchors 200 Max ft-lbf for 3/8" Anchors 345 Max ft-lbf for 1/2" Anchors

FEATURES

Consult ICC-ESR 3699 for a full technical report. Available at www.itwredhead.ca

CCESSORIES

PART Number	DESCRIPTION	BOX QTY
11493C	1/4 x 7 SDS Plus Tapcon Drill Bit	10
11494C	3/8 x 8 SDS Plus Tapcon Drill Bit	10
11495C	1/2 x 10 SDS Plus Tapcon Drill Bit	10

Strength Design Performance Values in Accordance to CSA 23.3-14

ITW RED HEAD TAPCON+ SCREW ANCHOR

DESIGN INFORMATION TESTED TO ICC-ES AC193 AND ACI 355.2, DEFINED IN ICC ESR-3699

TAPCON+ DESIGN INFORMATION

TAI CONT DESIGN IN OUMATIO					Nominal Anchor Diameter]
PARAMETER	Symbol	Units	1/	'4 "	3/8"	1/2"	1
Anchor outer diameter	$\mathbf{d}_{\mathrm{a}}[\mathbf{d}_{\mathrm{o}}]^{2}$	mm.	6	.4	9.5	12.7	
Drill bit specification		in	1/4" Tapcon+ bit	1/4" ANSI bit	3/8" ANSI bit	1/2" ANSI bit]
Minimum specified yield strength	f y	MPa	689		689	689	
Minimum specified ultimate strength	\mathbf{f}_{uta}	MPa	86	62	862	862	
Effective tensile stress area	$\mathbf{A}_{se,N} [\mathbf{A}_{se}]^6$	mm²	3	0	63	119	
Effective shear stress area	$\mathbf{A}_{se,V}[\mathbf{A}_{se}]^6$	mm²	3	0	63	119	CSA 23.3-14
Resistance modification factor, tension, steel failure modes	R	-			0.70		D5.3
Resistance modification factor, shear, steel failure modes	R	-			0.65		D5.3
Resistance factor for steel anchors	Фѕ	-			0.85		8.4.3
Factored steel resistance, tension	N,sar	kN	15	5.5	32.4	61.2	D.6.1.2
Factored steel resistance, shear	V ,sar	kN	14	1.4	30.1	56.8	D.7.1.2
Factored steel resistance, seismic shear	V ,sar,eq	kN	9	.5	24.3	41.9	
Effectiveness factor for uncracked concrete	k _{uncr}	_	1	0	11.25	12.5	D.6.2.2
Effectiveness factor for cracked concrete	k _{cr}	_			7		D.6.2.2
Modification factor for resistance in tension to account for uncracked concrete	Ψ _{c,} N	-			1		D.6.2.6
Anchor category	-	-	1	2		1	
Material resistance factor for concrete	Фс	-			0.65		8.4.2
Strength reduction factor for tension and	R	Cond. A	1.15	1.00	1.	15	D.5.3c
shear, concrete failure modes	R	Cond. B	1.00	0.85	1.	00	D.5.3c
Modification Factor for concrete density	λ	-	1			8.6.5	
Factored pullout resistance in 20 MPa uncracked concrete	Npr, uncr	kN	6.6	5.6	Pullout does not control	Pullout does not control	D.6.3.2
Factored pullout resistance in 20 MPa cracked concrete	N _{pr, cr}	kN	2.7 2.3		5.4	Pullout does not control	D.6.3.3
Factored seismic pullout resistance in 20 MPa cracked concrete	N _{pr, cr}	kN	2.7	2.3	4.9	Pullout does not control	D.6.3.3

^{1.} The data in this table was taken from ICC ESR-3699 and converted to be used in conjunction with the design provisions of CSA 23.3-14 or CSA 23.3-04, Chapter 8 and Annex D, as applicable.

^{2.} Installation must comply with the manufacturers printed installation instructions and details described in the ICC ESR-3699 and this ITW Red Head catalog 3. The 1/4", 3/8", and 1/2" Tapcon+ carbon steel anchors are considered brittle steel elements

^{4.} For all design cases, Ψ c, N = 1. The appropriate effectiveness factor for cracked (kcr) or uncracked concrete (kuncr) must be used.

5. Condition B was assumed for the strength reduction factor for tension and shear (concrete failure modes). For cases where the presence of supplementary reinforcement in conformance with CSA 23.3-14 D.5.3 can be verified, the modification factor for condition A may be used

^{6.} Where Pullout strength does not control anchor design, determine steel and concrete breakout capacities only.

Strength Design Performance Values in Accordance to CSA 23.3-14

ITW RED HEAD TAPCON+ SCREW ANCHOR

TAPCON+ INSTALLATION INFORMATION

PARAMETER	SYMBOL	UNITS	Nominal Anchor Diameter								
			1/4"	3/8"		1/2"					
Head Style	-	-	Hex Head	Hex Head	Hex Head						
Anchor Outer Diameter (Shank)	$\mathbf{d}_{a}[\mathbf{d}_{o}]^2$	mm. (in.)	6.4 (0.25)	9.7 (0.38)		12.7 (0.50)					
Nominal carbide bit diameter	d _{bit}	in.	1/4" Tapcon+ or 1/4" ANSI Bit	3/8" ANSI Bit		1/2" ANSI Bit					
Minimum base plate clearance hole diameter	d _h	mm. (in.)	9.7 (0.38)	12.7 (0.50)		16.0 (0.63)					
Effective embedment depth	h _{ef}	mm. (in.)	36.8 (1.45)	45.2 (1.78)	33.5 (1.32)	55.1 (2.17)	76.7 (3.02)				
Minimum nominal embedment depth	h _{nom}	mm. (in.)	50.8 (2)	63.5 (2-1/2)	50.8 (2)	76.2 (3)	101.6 (4)				
Minimum hole depth	h ₀	mm. (in.)	57.2 (2-1/4)	69.9 (2-3/4)	57.2 (2-1/4)	82.6 (3-1/4)	108 (4-1/4)				
Minimum concrete member thickness	h _{min}	mm. (in.)	101.6 (4)	101.6 (4)	101.6 (4)	152	.4 (6)				
Critical edge distance	c _{ac}	mm. (in.)	63.5 (2-1/2)	114.3 (4-1/2)	76.2 (3)	101.6 (4)	127.0 (5)				
Minimum anchor spacing	s _{min}	mm. (in.)	76.2 (3)	76.2 (3)	76.2 (3)	88.9 (3-1/2)	76.2 (3)				
Minimum edge distance	c _{min}	mm. (in.)	38.1 (1-1/2)	38.1 (1-1/2)	63.5 (2-1/2)	44.5 (1-3/4)	63.5 (2-1/2)				
Maximum installation torque	T _{inst, max}	ft-lb	20	50	70						
Maximum installation torque	T _{impact,}	ft-lb	115	200	345						

^{1.} Use ANSI carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors. 2. Tinst, max applies to installations using a calibrated torque wrench

FACTORED STEEL RESISTANCE FOR TAPCON+ CARBON STEEL ANCHORS

Nominal Anchor Diameter	Effective Emb. Depth mm. (in.)	Tensile, kN (lbf)	Shear, kN (lbf)	Seismic shear, kN (lbf)
1/4	37 (1-4/9)	15.5 (3495)	14.4 (3245)	9.5 (2145)
3/8	45 (1-7/9)	32.4 (7290)	30.1 (6770)	24.3 (5460)
	34 (1-1/3)			
1/2	55 (2-1/6)	61.2 (13760)	56.8 (12775)	41.9 (9425)
	77 (3)			

- 1. The 1/4", 3/8", and 1/2" Tapcon+ carbon steel anchors are considered brittle steel elements
- 2. Tension values calculated according to Clause D6.1.2 in CSA A23.3-14 Annex D
 3. Shear values calculated according to Clause D7.1.2 in CSA A23.3-14 Annex D
- 4. Seismic shear was calculated by reducing Vsar based on correlation between Vsa and Veq from the ICC ESR-3699

Strength Design Performance Values in Accordance to CSA 23.3-14

ITW RED HEAD TAPCON+ SCREW ANCHOR

FACTORED CONCRETE BREAKOUT/PULLOUT, TENSION kN (lbf)

			Conci	rete Compre	essive Stren	ngth (Uncra	cked)	Con	crete Comp	ressive Stre	ength (Cracl	ked)
Nominal Anchor Diameter (in.)	Effective Embedment Depth (in.)	Nominal Embedment Depth mm. (in.)	20 MPa (2900)	25 MPa (3625)	30 MPa (4350)	40 MPa (5800)	50 MPa (7250)	20 MPa (2900)	25 MPa (3625)	30 MPa (4350)	40 MPa (5800)	50 MPa (7250)
1/4	37 (1-4/9)	51 (2)	5.6 (1250)	6.2 (1395)	6.8 (1530)	7.9 (1765)	8.8 (1975)	2.3 (510)	2.5 (570)	2.8 (625)	3.2 (720)	3.6 (805)
3/8	45 (1-7/9)	64 (2-1/2)	9.9 (2235)	11.1 (2500)	12.2 (2735)	14.1 (3160)	15.7 (3535)	5.4 (1215)	6.0 (1360)	6.6 (1490)	7.6 (1720)	8.6 (1920)
	34 (1-1/3)	51 (2)	7.1 (1585)	7.9 (1775)	8.6 (1940)	10.0 (2245)	11.2 (2505)	4.0 (890)	4.4 (995)	4.8 (1090)	5.6 (1255)	6.2 (1405)
1/2	55 (2-1/6)	76 (3)	14.9 (3345)	16.6 (3735)	18.2 (4095)	21.0 (4725)	23.5 (5285)	8.3 (1870)	9.3 (2095)	10.2 (2295)	11.8 (2645)	13.2 (2960)
	77 (3)	102 (4)	24.4 (5490)	27.3 (6135)	29.9 (6720)	34.5 (7760)	38.6 (8675)	13.7 (3075)	15.3 (3435)	16.7 (3765)	19.3 (4345)	21.6 (4860)

^{1.} Linear interpolation between embedment depths and concrete compressive strength is not permitted.

- 3. Tabular values are for normal weight concrete only. For different concrete densities, apply modification factors according to CSA 23.3-14 8.6.5
- 4. Tabular values are for static loads only. For seismic tension refer to section 4.1.8 of the ICC ESR-3699.
- 5. Values are for Condition B in conformance with CSA 23.3-14 D.5.3
- 6. ANSI carbide bit drilling was assumed for all diameters. If using a 1/4" Tapcon+ drill bit, cracked and uncracked pullout of 1/4" Tapcon+ can be multiplied by 1.18

FACTORED CONCRETE PRYOUT/STEEL, RESISTANCE, SHEAR kN (lbf)

			Conc	rete Compr	essive Strei	ngth (Uncra	rcked)	Concrete Compressive Strength (Cracked)				
Nominal Anchor Diameter (in.)	Effective Embedment Depth mm. (in.)	Nominal Embedment Depth mm. (in.)	20 MPa (2900)	25 MPa (3625)	30 MPa (4350)	40 MPa (5800)	50 MPa (7250)	20 MPa (2900)	25 MPa (3625)	30 MPa (4350)	40 MPa (5800)	50 MPa (7250)
1/4	37 (1-4/9)	51 (2)	5.5 (1240)	6.2 (1395)	6.8 (1530)	7.8 (1755)	8.7 (1965)	2.3 (870)	4.3 (970)	4.7 (1065)	5.5 (1230)	6.1 (1375)
3/8	45 (1-7/9)	64 (2-1/2)	9.9 (2235)	11.1 (2500)	12.2 (2735)	14.1 (3160)	15.7 (3535)	6.2 (1390)	6.9 (1555)	7.6 (1705)	8.7 (1965)	9.5 (2200)
	34 (1-1/3)	51 (2)	7.1 (1585)	7.9 (1775)	8.6 (1940)	10.0 (2245)	11.2 (2505)	4.0 (890)	4.4 (995)	4.8 (1090)	5.6 (1255)	6.2 (1405)
1/2	1/2 55 (2-1/6) 76 (3)	14.9 (3345)	16.6 (3735)	18.2 (4095)	21.0 (4725)	23.5 (5285)	8.3 (1870)	9.3 (2095)	10.2 (2295)	11.8 (2645)	13.2 (2960)	
	77 (3)	102 (4)	48.8 (10975)	54.6 (12270)	56.8 (12775)	56.8 (12775)	56.8 (12775)	27.3 (6145)	30.6 (6870)	33.5 (7530)	38.7 (8695)	43.2 (9720)

^{1.} Linear interpolation between embedment depths and concrete compressive strength is not permitted.

- 4. Tabular values are for static loads only. For seismic shear compare values in this table with steel strength values.
- 5. Values are for Condition B in conformance with CSA 23.3-14 D.5.3

^{2.} Single anchor with no spacing, edge distance, and concrete thickness factors included. Apply these factor according to project condition and compare to steel values to determine anchor strength for design.

^{2.} Single anchor with no spacing, edge distance, and concrete thickness factors included. Apply these factor according to project condition and compare to steel strength values to determine anchor strength for design

^{3.} Tabular values are for normal weight concrete only. For different concrete densities, apply modification factors according to CSA 23.3-14 8.6.5

Multi-Set II **Drop-In Anchors**

Internally **Threaded Heavy-Duty Anchoring Systems**

DESCRIPTION/SUGGESTED SPECIFICATIONS

Drop-In, Shell-Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Drop-In, shell-type anchors feature an internally threaded, all-steel shell with expansion cone insert and flush embedment lip. Anchors are manufactured from zinc-plated carbon steel, 18-8 stainless steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994 specifications.

Anchors should be tested to ASTM E488 criteria. Anchors should also be listed by the following agencies as required by the local building code: UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

ADVANTAGE

Depth Charge Stop Drill Anchors

- Shoulder prevents over drilling
- Less likely to hit reinforcing steel or post-tension cable in concrete
- No lost time or energy drilling farther than necessary
- Anchor is set at a specified depth, does not drop too far into hole

RM Drop-In Anchor

- Lipped anchor body keeps anchor flush
- Easy installation
- Keeps all rods same length
- Easy inspection
- Available in carbon steel, 18-8

RX Drop-In Anchor

- Optimized for use in hollow-core, pre-cast plank and post-tension slabs
- Lip keeps anchor flush during installation
- Shallow drilling—fast installation

RL Drop-In Anchor

- Below surface setting for easy patch work
- Higher performance potential with deep embedment setting

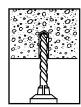
APPLICATIONS

Pumps and heavy piping are common applications for larger diameter Multi-Set Drop-In Anchors.

APPROVALS/LISTINGS

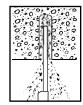
Underwriters Laboratories Factory Mutual

INSTALLATION STEPS

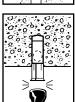


Cable tray and strut suspended from concrete ceilings are ideal Multi-Set applications. In post-tension or hollow-core slabs use the RX-38.

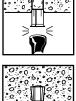
The Multi-Set Anchor is the standard for pipe-hanging. The RM version has a retainer lip to keep all anchors flush at


the surface, keeping all your threaded

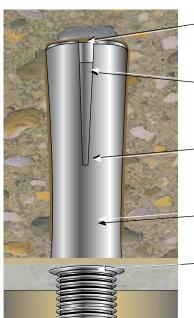
rod the same length.



To set anchor flush with surface:


1. Drill hole to required embedment (see Table on page RH 63).

2. Clean hole with pressurized air.



3. Drive anchor flush with surface of concrete.

4. Expand anchor with setting tool provided (see chart on page RH 61). Anchor is properly expanded when shoulder of setting tool is flush with top of anchor.

For use with threaded rods or headed bolts (supplied by contractor)

Expander Slots—allow for easy setting and superior performance

Cone Insert—that expands the anchor when driven with setting tool and hammer

Body—available in zinc-plated steel, 18-8 stainless steel

Easy Depth Inspection—keeps threaded rod drop lengths consistent

Retainer Lip—to keep anchor flush with surface

1 setting tool per master carton (See page RH 54 for part numbers.)

To set anchor below surface:

Drill hole deeper than anchor length. Thread bolt into anchor. Hammer anchor into hole until bolt head is at desired depth. Remove bolt and set anchor with setting tool.

For use with RX-38 only.

PART NUMBER RTX-112

For use with RX-12 only.

Multi-Set II

One setting tool per master carton.

For continuous extreme low temperature, use stainless steel.

USER	APPLICATION	BASE	CORROSION	DROP-IN	PART	SETTING	BOLT SIZE-	DRILL BIT	THREAD	EMBEDMENT	QTY/WT	QTY/WT
TYPE		MATERIAL	RESISTANCE LEVEL	ANCHOR TYPE	NUMBER	TOOL PART	THREADS PER INCH	DIA. In. (mm)	DEPTH In. (mm)	MIN. HOLE DEPTH	PER BOX	PER MASTER CTN
			22722			NUMBER	1 Eli liteli	()	()	In. (mm)	103.	lbs.
HVAC/	Fire Sprinkler	Solid	Low	RM	RM-38* +	RT-138	3/8" - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/ 36
100		concrete/			RM-12* +	RT-112	1/2" - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.8	400/ 49
	and the same	lightweight										
		fill deck										
		Hollow-core	Low	RX	RX-38*	RTX-138	3/8" - 16	1/2 (12.7)	3/8 (9.5)	3/4 (19.1)	100/ 3.5	1000/ 36
		pre-cast		(m r.)	RX-12	RTX-112	1/2" - 13	5/8 (15.9)	1/2 (12.7)	1 (25.4)	50/ 3.0	500/ 31
		or Post-										
	0	tension										
0	A	Solid	Medium	SRM**	SRM-38* +	RT-138	3/8" - 16	1/2 (12.7)	1/2 (12.7)	1 - 5/8 (41.3)	50/ 3.4	500/ 36
		concrete/		18-8 S.S.	SRM-12* +	RT-112	1/2" - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 6.0	400/ 50
		lightweight										
		fill deck										
Concrete Cut	ting/	Solid	Low	RL	RL-14	RT-114	1/4" - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.6	1000/ 28
Sawing Cont	ractor/Misc. Metal	concrete/		(w/o lip)	RL-38	RT-138	3/8" - 16	1/2 (12.7)	1/2 (12.7)	1 - 5/8 (41.3)	50/ 3.4	500/ 36
1111		lightweight			RL-12	RT-112	1/2" - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.8	400/ 49
1		fill deck			RL-58	RT-158	5/8" - 11	7/8 (22.2)	1 (25.4)	2 - 1/2 (63.5)	25/ 7.8	125/ 41
170					RL-34	RT-134	3/4" - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/ 49
Care True												

^{*} FM Approved

+ UL Approved

Multi-Set II Depth Charge Anchors

PART NUMBER	DESCRIPTION	DRILL Depth
DC-38	1/2" x 1-11/6" CARBIDE DRILL BIT FOR 3/8" DROP-IN	1-11/16"
DC-12	5/8" x 2-1/6" CARBIDE DRILL BIT FOR 1/2" DROP-IN	2-1/6"
DCX-138	1/2" x 13/16" CARBIDE DRILL BIT FOR 3/8" STUBBY DROP-IN	13/16"

- Shoulder prevents over drilling
- Less likely to hit reinforcing steel or post-tension cable in concrete

- No lost time or energy drilling farther than necessary
- Anchor is set at a specified depth, does not drop too far into hole

PERFORMANCE TABLES

Multi-Set II Drop-In Anchors

Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

		שוש	וופען	Aligi	U S		10115101		medi I	ara es	100/Ki	-,		
ВС	DLT	ANC	HOR	MIN. EM	BEDMENT	ANCHOR			TENSION	Lbs. (kN)			SHEAR	Lbs. (kN)
	IA. mm)	Di In. (ı			PTH (mm)	TYPE		2000 PSI 8 MPa)		000 PSI MPa)		6000 PSI 4 MPa)		000 PSI MPa)
1/4	(6.4)	3/8	(9.5)	1	(25.4)		1,680	(7.5)	2,360	(10.5)	2,980	(13.3)	1,080	(4.8)
3/8	(9.5)	1/2	(12.7)	1-5/8	(41.3)	RM, RL	2,980	(13.3)	3,800	(16.9)	6,240	(27.8)	3,160	(14.1)
1/2	(12.7)	5/8	(15.9)	2	(50.8)	or CL-Carbon	3,300	(14.7)	5,840	(26.0)	8,300	(36.9)	4,580	(20.4)
5/8	(15.9)	7/8	(22.2)	2-1/2	(63.5)	or SRM-18-8 S.S.	5,500	(24.5)	8,640	(38.4)	11,020	(49.0)	7,440	(33.1)
3/4	(19.1)	1	(25.4)	3-3/16	(81.0)		8,280	(36.8)	9,480	(42.2)	12,260	(54.5)	10,480	(46.6)

^{*} Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

^{*} For continuous extreme low temperature applications, use stainless steel.

Multi-Set II Ultimate Tension and Shear Values (Lbs/kN) in chors Lightweight Concrete*

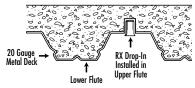
	BOLT ANCHOR DIA. DIA. In. (mm) In. (mm)		DIA. EMBEDMENT In. (mm) DEPTH		ANCHOR Type			HT CONCRETE PSI (20.7 MPa)		LOWER FLUTE OF STEEL DECK WITH LIGHTWEIGHT CONCRETE FILL f'c = 3000 PSI (20.7 MPa)				
	()		,	In. (r	nm)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
3/8	(9.5)	1/2	(12.7)	1-5/8	(39.7)		3,860	(17.2)	4,420	(19.6)	3,340	(14.9)	4,420	(19.6)
1/2	(12.7)	5/8	(15.9)	2	(50.8)	RM, RL	4,080	(18.1)	5,640	(25.1)	3,200	(14.2)	4,940	(22.0)
5/8	(15.9)	7/8	(22.2)	2-1/2	(63.5)	or CL-Carbon or SRM-18-8 S.S	6,280	(27.9)	10,440	(46.4)	5,960	(26.5)	5,840	(26.0)
3/4	(19.1)	1	(25.4)	3-3/16	(81.0)		11,000	(48.9)	15,780	(70.2)	8,180	(36.4)	9,120	(40.6)

^{*} Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II

Recommended Edge and Spacing Distance Requirements*

BOLT DIA. In. (mm)	DRILL BIT SIZE In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. EDGE DISTANCE AT WHICH LOAD FACTOR APPLIED =.80 FOR TENSION =.70 FOR SHEAR In. (mm)		WHICH REQUIR APPLIED OBTAIN NSION WORKING HEAR In. (m		MIN. ALLOWAI BETWEEN A LOAD FACTO =.80 FOR =.55 FOR In. (m	ANCHORS R APPLIED TENSION SHEAR
1/4 (6.4)	3/8 (9.5)	1 (25.4)		1-3/4	(44.5)	7/8	(22.2)	3-1/2	(88.9)	1-3/4	(44.5)
3/8 (9.5)	1/2 (12.7)	1-5/8 (41.3)	RM, RL	2-7/8	(73.0)	1-7/16	(36.5)	5-11/16	(144.5)	2-7/8	(73.0)
1/2 (12.7)	5/8 (15.9)	2 (50.8)	or CL-Carbon or	3-1/2	(88.9)	1-3/4	(44.5)	7	(177.8)	3-1/2	(88.9)
5/8 (15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S.	4-3/8	(111.1)	2-3/16	(55.6)	8-3/4	(222.3)	4-3/8	(111.1)
3/4 (19.1)	1 (25.4)	3-3/16 (81.0)		5-5/8	(142.9)	2-13/16	(71.4)	11-3/16	(284.2)	5-5/8	(142.9)


Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Multi-Set | Ultimate Tension and Shear Values (Lbs/kN) for RX-series Drop-In Anchors (3/4" and 1" Embedment)*

BOLT DIA.	DRILL BIT	EMBEDMENT	2500 PSI (17.2	MPa) CONCRETE	4000 PSI (27.6	MPa) CONCRETE	HOLLO	W CORE
In. (mm)	SIZE In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/8 (9.5)	1/2 (12.7)	3/4 (19.1)	1,571 (7.0)	2,295 (10.2)	1,987 (8.8)	2,903 (12.9)	1,908 (8.5)	2,401 (10.7)
1/2 (12.7)	5/8 (15.9)	1 (25.4)	2,113 (9.4)	2,585 (11.5)	2,673 (11.9)	3,270 (14.5)	2,462 (11.0)	2,401 (10.7)

The tabulated values are for RX anchors installed at a minimum of 12 diameters on center and minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameters spacing and 3 diameter edge distance provided the values are reduced 50 percent. Linear Interpolation may be used for intermediate spacings and edge margins.

Multi-Set | Anchoring Overhead in 3000 PSI Drop-In Anchors Lightweight Concrete On Metal Deck

ANCHOR	DRILL HOLE	EMBEDMENT		3000PSI (20.7 MPa)	CONCRETE
	DIAMETER In. (mm)	In. (mm)	ULTIMATE T Lbs	ENSION LOAD . (kn)	ALLOWABLE WORKING LOAD Lbs. (kN)
RX-38 Drop-In	1/2 (12.7)	3/4 (19.1)	Upper Flute	1,410 (6.3)	353 (1.6)
			Lower Flute	1,206 (5.4)	301 (1.3)

^{*} Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Combined Tension and Shear Loading—for Multi-Set Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Pt = Allowable tension load Vt = Allowable shear load Ps = Applied tension load Vs = Applied shear load

^{*} Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Dynabolt[®] Sleeve Anchors

Versatile, **Medium-Duty** Sleeve Anchor

Dynabolt Hex Nut Sleeve Anchor

DESCRIPTION/SUGGESTED SPECIFICATIONS

Sleeve Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE, MASONRY, GROUT-FILLED BLOCK AND **HOLLOW BLOCK**

Sleeve type anchors feature a split expansion sleeve over a threaded stud bolt body and integral expander, nut and washer.

Anchors are made of Plated Carbon Steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

Anchors are tested to ASTM E488 criteria.

DVANTAGES

- Anchor diameter equals hole diameter
- Available in Hex head and Phillips Flat head
- Available 5/16 5/8" diameter up to 6-1/4" length
- Zinc plated carbon steel
- Provides full 360° hole contact over large area and reduces concrete stress
- Heavy-loading capacity
- Preassembled for faster, easier installations
- Dynabolt can be installed through object to be fastened
- Sleeve design improves holding power
- No pre-spotting of holes necessary

Available Head Styles

Full range of head style, corrosion protection, and sizes makes the Dynabolt Sleeve the right product for almost any application.

> **Phillips** Flat Head

Hex Nut

(HN)

Use a bit with a diameter equal to the anchor. See selection chart to determine proper size bit for anchor used. Drill hole to any depth exceeding minimum embedment. Clean hole.

2. Insert assembled anchor into hole, so that washer or head is flush with materials to be fastened.

3. Expand anchor by tightening nut or head 2 to 3 turns.

Dynabolt Sleeve Anchors

APPLICATIONS

Electrical junction boxes are common applications for the Dynabolt Sleeve anchor because it works well in solid concrete, concrete block, and brick. It is also available in several finished head styles.

Factory Mutual
California State Fire Marshal

APPROVALS/LISTINGS

(Formerly GSA: FF-S-325 Group II, Type 3, Class 3)

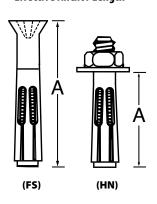
Meets or exceeds U.S. Government G.S.A. Specification A-A-1922A

The Dynabolt Sleeve anchor works well in hollow materials like brick and block. It is available in zinc-plated carbon steel.

Door and window frames are commonly attached to the structure with Dynabolt Sleeve anchors because of their finished & threshold head styles and performance in block & brick.

SELECTION CHART

DynaboltCarbon Steel with Zinc Plating



Typical Applications— Shelf ledgers, electrical boxes, conduit

Environment—Interior (non-corrosive)

Level of Corrosion—Low

* Effective Anchor Length

HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	ANC LEN	CTIVE HOR GTH* mm)	BOLT DIA./ THREADS PER INCH	MI EMBED In. (1	MENT	THICK OF MA' TO BE FA In. (1	NESS TERIAL ISTENED	QTY/WT PER BOX lbs.	QTY/WT PER MASTER CARTON Ibs.
	HN-1614	5/16"	1-1/2	(38.1)	1/4" /20	1-1/4	(31.8)	1/4	(6.4)	100/4.0	1000/ 41
	HN-3817*	3/8"	1-7/8	(47.6)	5/16" /18	1-1/2	(38.1)	3/8	(9.5)	50/3.5	500/ 36
	HN-3830*		3	(76.2)	5/16" /18	1-1/2	(38.1)	1-1/2	(38.1)	50/4.9	400/ 40
HEX NUT	HN-1222*	1/2"	2-1/4	(57.2)	3/8" /16	1-7/8	(47.6)	3/8	(9.5)	25/3.3	250/ 34
HEX	HN-1230*		3	(76.2)	3/8" /16	1-7/8	(47.6)	1-1/8	(28.6)	25/4.0	200/ 33
	HN-1240*		4	(101.6)	3/8" /16	1-7/8	(47.6)	2-1/8	(54.0)	25/5.3	200/ 44
	HN-1260*		6	(152.4)	3/8" /16	1-7/8	(47.6)	4-1/8	(104.8)	20/5.6	200/ 56
	HN-5842*	5/8"	4-1/4	(108.0)	1/2" /13	2	(50.8)	2-1/4	(57.2)	10/3.9	100/ 41
PHILUPS FLAT HEAD	FS-3850	3/8"	5	(127.0)	5/16" /18	1-1/2	(38.1)	3-1/2	(88.9)	50/ 5.6	300/ 40

^{*} FM Approved

Phillips flat head uses a standard 80°-82° counter sink.

Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f′c	= 2000 F	PSI (13.8 M	Pa)	f′c:	= 3000 P	SI (20.7 N	IPa)	f′c	= 4000 P	SI (27.6 M	Pa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENS Lbs.		SHE/ Lbs. (TENSI Lbs. (SHE Lbs. (TENS Lbs. (EAR (kN)
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,400	(6.2)	2,040	(9.1)	1,920	(8.5)	2,220	(9.9)	2,600	(11.6)	2,400	(10.7)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)		1,620	(7.2)	2,560	(11.4)	2,240	(10.0)	2,800	(12.5)	3,100	(13.8)	3,040	(13.5)
1/2 (12.7)	20 (27.1)	3/8 (9.5)	1-7/8 (47.6)	Carbon	2,220	(9.9)	4,000	(17.8)	3,140	(14.0)	4,500	(20.0)	4,400	(19.6)	5,000	(22.2)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,080	(13.7)	6,440	(28.6)	4,400	(19.6)	7,240	(32.2)	6,120	(27.2)	8,080	(35.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		4,200	(18.7)	10,200	(45.4)	6,060	(27.0)	11,600	(51.6)	8,900	(39.6)	13,100	(58.3)

For continuous extreme low temperature applications, use stainless steel.

DynaboltSleeve Anchors Ultimate Tension and Shear Values in Lightweight Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	ANCHOR				f'c = 6000 PSI (41.4 MPa)			
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENS Lbs.		SHE/ Lbs. (TENSI Lbs. (I		SHE Lbs. (
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,260	(5.6)	1,680	(7.5)	1,440	(6.4)	2,220	(9.9)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)		1,620	(7.2)	2,300	(10.2)	2,240	(10.0)	2,800	(12.5)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Carbon	2,600	(11.6)	3,920	(17.4)	3,160	(14.1)	4,840	(21.5)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,240	(14.4)	5,600	(24.9)	4,300	(19.1)	7,840	(34.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		3,640	(16.2)	8,640	(38.4)	5,800	(25.8)	12,480	(55.5)

	Dy Slee	r nab ve Anci	olt hors Ult	imate	Tensio	n and	Shear	Values	in Mas	onry U	nits (Lt	os/kN)*
ANCHOR DIA.	INSTALLATION TORQUE	BOLT DIA.	MINIMUM EMBEDMENT	ANCHOR TYPE	HOLLO		VEIGHT GROUT	FILLED	HOLLO	MEDIUI W CORE	M WEIGHT GROUT	FILLED
In. (mm)	Ft. Lbs. (Nm)	In. (mm)	DEPTH In. (mm)	(STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)						
3/8 (9.5)	15 (20.3)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Carbon			2,220 (9.9)	4,000 (17.8)			2,220 (9.9)	4,000 (17.8)
5/8 (15.9)	55 (74.6)	1/2 (12.7)	2 (50.8)	Carbon			3,080 (13.7)	6,440 (28.6)			3,080 (13.7)	6,440 (28.6)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/2 (63.5)	Carbon			4,200 (18.7)	10,200 (45.4)			4,200 (18.7)	10,200 (45.4)

Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values. The tabulated values are for anchors installed in a minimum of 12 diameters on center and a minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameter spacing and 3 diameter edge distance, provided the values are reduced 50 percent. Linear interpolation may be used for intermediate spacings and edge distances.

Combined Tension and Shear Loading—for Dynabolt Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation: $(Ps/Pt) + (Vs/Vt) \le 1$

Ps = Applied tension load Vs = Applied shear load Pt = Allowable tension load Vt = Allowable shear load

Hammer-Set Anchors

Nail-Drive Anchors

APPLICATIONS

NOT FOR USE IN OVERHEAD APPLICATIONS*

- Electrical boxes
- Conduit clips
- Drywall track
- Roof flashing

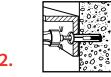
DESCRIPTION/SUGGESTED SPECIFICATIONS

Hammer-Set Nail Drive Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BLOCK AND BRICK

The Hammer-Set one-piece zinc plated steel anchor consists of an expansion body and expander drive pin. Anchors meet or exceed GSA specification A-A-1925A Type 1. (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

ADVANTAGES


Fast, easy installation

- Install through material to be fastened
- Works in concrete, block and brick
- Low profile mushroom head style

APPROVALS/LISTINGS

Meets or exceeds GSA specification A-A-1925A Type 1 (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

- 1. Drill proper size hole through material to be fastened into base material. (See Chart for bit size).
- Clean hole.
- 3. Insert Hammer-Set into hole until head of anchor body is flush with material to be fastened. Tap the nail until flush with head of anchor. Ensure minimum embedment is 1/4" deeper than anchor embedment. Be sure head is firmly against fixture
- 4. Anchor is now set. ** NOT RECOMMENDED FOR OVERHEAD **

SELECTION CHART

Hammer-Set

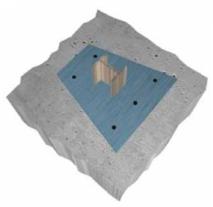
PART NUMBER	DESCRIPTION In. (mm)	DRILL SIZE In. (mm)	MAX. FIXTURE THICKNESS In. (mm)	MIN. EMBEDMENT In. (mm)	MIN. HOLE DEPTH In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN-lbs.
HS-1607	3/16 x 7/8 (4.8 x 22.2)	3/16 (4.8)	1/4 (6.4)	5/8 (15.9)	1-1/8 (28.6)	100/ 2.0	1000/ 20
HS-1412	1/4 x 1-1/4 (6.4 x 31.8)	1/4 (6.4)	1/2 (12.7)	3/4 (19.1)	1-1/2 (38.1)	100/ 2.6	1000/ 26
HS-1414	1/4 x 1-1/2 (6.4 x 38.1)	1/4 (6.4)	3/4 (19.1)	3/4 (19.1)	1-3/4 (44.5)	100/ 2.8	1000/ 28
HS-1420	1/4 x 2 (6.4 x 50.8)	1/4 (6.4)	1-1/4 (31.8)	3/4 (19.1)	2-1/4 (57.2)	100/3.5	1000/35

PERFORMANCE TABLE

Ultimate Tension and Shear Values in Concrete (Lbs/kN)*

ANCHOR	EMBEDMENT	4000 PSI (27.6 MPa)						
DIA. In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)					
3/16" (4.8)	5/8" (15.9)	640 (2.8)	810 (3.6)					
1/4" (6.4)	3/4" (19.1)	880 (3.9)	970 (4.3)					
1/4" (6.4)	1" (25.4)	950 (4.2)	970 (4.3)					
1/4" (6.4)	1-1/4" (31.8)	1,025 (4.6)	970 (4.3)					

Safe working loads for single installations under static loading conditions should not exceed 25% of the ultimate capacity.


FREE SOFTWARE

Canadian Design Standard – CSA A23.3-14

AVAILABLE IN ENGLISH AND FRENCH CANDIAN

Customize base plate shapes and anchor layouts

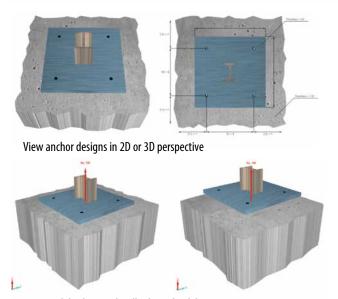
The most user-friendly anchor design software is now even better, allowing you to do more types of anchor designs from anywhere, be that in the office or out on the jobsite.

NEW! Access cloud-based Truspec v3 via web browser from your computer or mobile device.

- Cloud-based version means users always have access to the latest features, without the hassle of installing updates.
- Can access from 4G mobile devices even without wi-fi internet connection.

Versatile – do everything in one package

- **NEW** Supports cast-in as well as post-installed anchor design
- NEW Supports anchoring to masonry (available Q1 2020) as well as concrete substrates
- **NEW** Allows you to customize base plate shapes and anchor layouts


Accurate, reliable, Canadian code-compliant anchor designs (CSA A23.3-14)

- NEW Supports ACI318 Strength Design method for concrete and Allowable Stress Design (ASD) for masonry.
- **NEW** Truspec v3 lets you enter multiple load combinations and calculates the worst-case controlling combination for you.
- NEW Truspec v3 checks your base plate design using finite element analysis to ensure adequate rigidity

Intuitive, easy to use

- Consistently ranked by designers as one of the simplest anchor design software to learn and use, Truspec v3 walks you through the anchor design and selection process in six easy steps — saving time and preventing errors.
- Customizable templates are provided for common anchoring applications like base plates, end plates and safety railings.
- Graphical user interface provides 2D and 3D design views making it easy to visualize all design elements at a glance.
- Tooltip messages provide helpful information whenever the cursor is positioned over an element on the user interface.
- Animated indicators simplify and speed the input of tensile, shear and moment load values
- Truspec allows you to filter anchor recommendations by type, diameter, steel grade, etc. Truspec also ranks the viable options to show which are the most efficient from a capacity utilization perspective.

Animated display graphically shows load direction

The NEW, enhanced design report shows all inputs, formulas, and calculations with relevant standards citations, plus complete anchor product info and installation instructions.

USE TRUSPEC V3 SOFTWARE WITH THE FOLLOWING POPULAR ANCHORING PRODUCTS:

CHEMICAL ANCHORING ADHESIVES

- Red Head A7+ Adhesive
 - The most versatile quick cure Fast-curing, all-weather hybrid adhesive
- Red Head C6+ Adhesive
 - For the most demanding applications Maximum strength epoxy adhesive
- Red Head G5+ Adhesive

General-purpose epoxy
Long working time suitable for hot climates

POST-INSTALLED MECHANICAL ANCHORS

- Trubolt Wedge Anchors
 Dependable, heavy-duty expansion anchor
- Tapcon and Tapcon+ Screw Anchors
 Fast installation with reliable holding power
- Sammys Threaded Rod Hangers
 Accommodates vertical, horizontal and angled attachments

CAST-IN ANCHORS

- Hex and heavy hex head bolts
- Square and heavy square head bolts

Notes	

Notes

National Headquarters

120 Travail Road Markham, Ontario, L3S 3J1

Tel: 905-471-7403 800-387-9692

Fax: 905-471-7208 800-668-8688

Technical and Customer Service Support

Tel: 800-387-9692 Fax: 800-668-8688

Regional Warehouses

- Markham, Ontario
- Coguitlam, British Columbia
- Calgary, Alberta

Ramset, T4, T3, T3Cup, Trakfast, GypFast, Mastershot, Triggershot, Hammershot, PowerPoint, TE Pin and Climacoat are trademarks of Illinois Tools Works, Inc.

A7+, C6+, Dynabolt, G5, Hammer-Set, LDT, Multi-Set II, Poly Set, Red Head, Redi-Drive, S7, Striker, and Trubolt are trademarks of ITW Red Head and Illinois Tool Works, Inc.

Teks, TruGrip GT, Scots, Maxiseal, Dek-Cap, Tapcon, SG, Tapcon, Maxi-Set Tapcon, Condrive, E-Z Ancor, E-Z Toggle, Twist-N-Lock, E-Z Lite, E-Z Mini, Stud Solver, Hi-Lo, S-12, Backer-On, Rock-On, DecKing, Dec-U-Drive, Dek-Cap, Grid-Mate, Grid-Mate, PB, Climaseal, Spex, Climacoat, UltraShield, Climashield and Building Ideas That Work are trademarks of ITW Buildex and Illinois Tool Works. Inc.

Sammys, Sammy X-Press, Sammy X-Press It, Sammy X-Press Swivel, Sammy X-Press Sidewinder, Tapcon, Sammy Saddle, Speedy Pole Tool, Spot-Rite Level, and Truss-T Hanger are trademarks of ITW Buildex and Illinois Tool Works, Inc.

The term "Paslode" is a trademark and the Paslode logo and all related product and service names, designs and slogans are Paslode trademarks. Paslode, RounDrive, Impulse, Positive Placement are registered trademarks, PowerFramer and quicklode are trademarks of Illinois Tool Works.

R4, RSS, Kameleon, Fin/Trim, RT Composite, Low Profile Cabinet, Pheinox, Top Star, VWS, Caliburn, and The GRK Fasteners Canada Ltd. and all associated designs and logos are trademarks of GRK Fasteners Canada Ltd., used under license.

Hilti is a registered trademark of Hilti, Corp.

DensGlass is a registered trademark of Georgia Pacific Building Products.

Dekstrip, Dektite, Retrofit Dektite, and Dektite are registered trademarks of Deks Industries Pty Ltd. Phillips Square-driv is a registered trademark of the Phillips Screw Company.

© 2021 Illinois Tool Works, Inc. Form. No. 01/21

Take Advantage of these Contractor Services from ITW Construction Products Canada

From job sites to engineering firms, from Safety Seminars to on-site services, we hope you take advantage of our many contractor services—at no charge! After all, it's one thing to offer the quality products you need to do your job. It's another to provide you with superior service, engineering expertise and total product support.

At ITW Construction Products Canada, we are proud of the partnerships we have built through the years with our distributor network and contractors. Thanks to quality products, innovative services and on-time delivery, we will continue to build new relationships and strengthen existing ones today... and into the next century.

- Factory representatives with years of training and service experience will go out to your job site to provide you with product, service and technical assistance.
- We provide architects and engineers with complete submittal packages which gives them the technical data needed to specify ITW Construction Products Canada products. Contact your ITW Construction Products Canada Distributor or your nearest Customer Service location to request submittal packages.

Technical Application Assistance:

 Our staff of application specialists are ready to assist you with any type of application or code approval question during any phase of your project. Call 1-800-387-9692 between 8:00 a.m. and 5:00 p.m. EST, Monday through Friday.

Distributed By

The information and recommendations in this document are based on the best information available to us at the time of preparation. We make no other warranty, expressed or implied, as to its correctness or completeness, or as to the results or reliance of this document.